# 2009 Mazda RX-8 Service Highlights

#### **FOREWORD**

This manual contains on-vehicle service and/or diagnosis procedures for the Mazda RX-8.

For proper repair and maintenance, a thorough familiarization with this manual is important, and it should always be kept in a handy place for quick and easy reference.

All the contents of this manual, including drawings and specifications, are the latest available at the time of printing.
As modifications affecting repair or maintenance occur, relevant information supplementary to this volume will be made available at Mazda dealers. This manual should be kept up-to-date.

Mazda Motor Corporation reserves the right to alter the specifications and contents of this manual without obligation or advance notice.

All rights reserved. No part of this book may be reproduced or used in any form or by any means, electronic or mechanical—including photocopying and recording and the use of any kind of information storage and retrieval system—without permission in writing.

Mazda Motor Corporation HIROSHIMA, JAPAN

#### APPLICATION:

This manual is applicable to vehicles beginning with the Vehicle Identification Numbers (VIN), and related materials shown on the following page.

#### **CONTENTS**

| Title                                         | Section |
|-----------------------------------------------|---------|
| GENERAL INFORMATION                           | 00      |
| ENGINE                                        | 01      |
| SUSPENSION                                    | 02      |
| DRIVELINE/AXLE                                | 03      |
| BRAKES                                        | 04      |
| TRANSMISSION/TRANSAXLE                        | 05      |
| STEERING                                      | 06      |
| HEATER, VENTILATION & AIR CONDITIONING (HVAC) | 07      |
| RESTRAINTS                                    | 08      |
| BODY & ACCESSORIES                            | 09      |

There are explanation given only for the sections marked with shadow (

© 2008 Mazda Motor Corporation PRINTED IN U.S.A., MARCH 2008 Form No. 3452–1U–08C Part No. 9999–95–102F–09

### **VEHICLE IDENTIFICATION NUMBERS (VIN)**

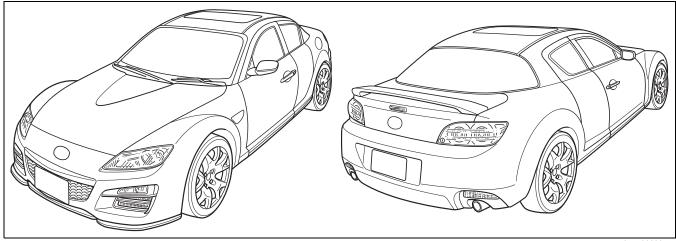
JM1 FE172\*9# 400001— JM1 FE174\*9# 400001— JM1 FE17M\*9# 400001— JM1 FE17P\*9# 400001—

### **RELATED MATERIALS**

| Material Name                                                                                               | MNAO Part No.    | Mazda Material No. |
|-------------------------------------------------------------------------------------------------------------|------------------|--------------------|
| 2004 Mazda RX-8 Service Highlights                                                                          | 9999-95-102F-04  | 3378-1U-03C        |
| 2005 Mazda3, Mazda MX-5 Miata, Mazda MX-5, MAZDASPEED MX-5, Mazda MPV, Mazda RX-8 Service Highlights        | 9999-95-MODL-05  | 3400-1U-04H        |
| 2006 Mazda RX-8 Service Highlights                                                                          | 9999-95-102F-06  | 3409-1U-05J        |
| 2007 Mazda3, MAZDASPEED3, Mazda5, Mazda MX-5, Mazda6, MAZDASPEED6, Mazda RX-8 Service Highlights            | 9999-95-MODL-07  | 3422-1U-06G        |
| 2008 Mazda3, MAZDASPEED3, Mazda5, Mazda MX-5, Mazda6, Mazda CX-7, Mazda RX-8, Mazda CX-9 Service Highlights | 9999-95-010F-08  | 3431-1U-07I        |
| 1995, 1996, 1997, 1998, 1999, 2000 OBD-II Service Highlights                                                | 9999-95-OBD2-00  | 3344-1U-99K        |
| 2009 Mazda RX-8 Workshop Manual                                                                             | 9999-95-064B-09  | 1927-1U-08C        |
| Engine Worlshop Manual 13B-MSP                                                                              | 9999-95-E13B-MSP | 1773-1U-03C        |
| Manual Transmission Workshop Manual P66M-D                                                                  | 9999-95-423H-06  | 1848-1U-05F        |
| Automatic Transmission Workshop Manual SJ6A-EL                                                              | 9999-95-SJ6A-EL  | 1876-1U-06J        |
| 2004 Mazda RX-8 Bodyshop Manual                                                                             | 9999-95-120F-04  | 3379-1U-03D        |
| 2009 Mazda RX-8 Wiring Diagram                                                                              | 9999-95-040G-09  | 5762-1U-08C        |

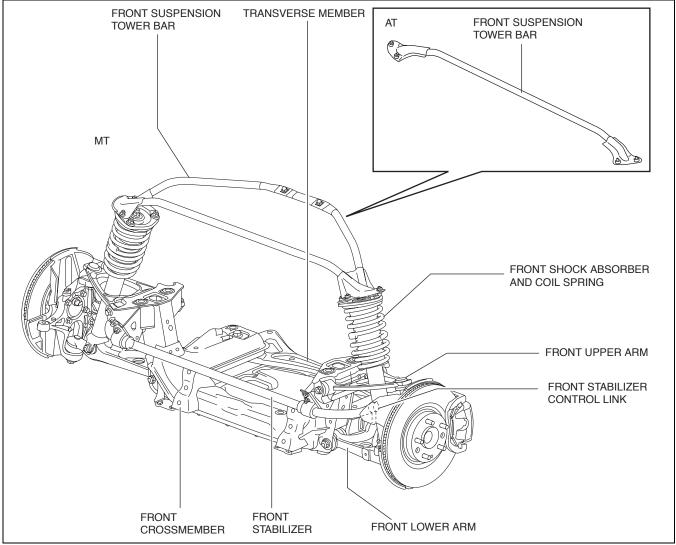
00-00

**GENERAL INFORMATION....00-00** 


### 00-00 GENERAL INFORMATION

#### **AIM OF DEVELOPMENT**

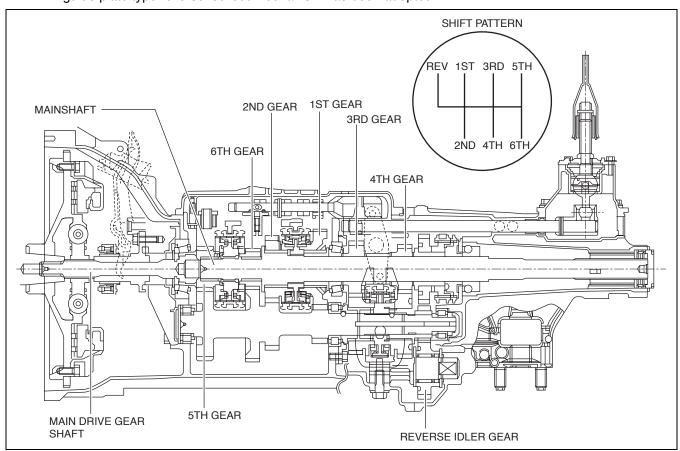
Outline External view






ar8uun00000171

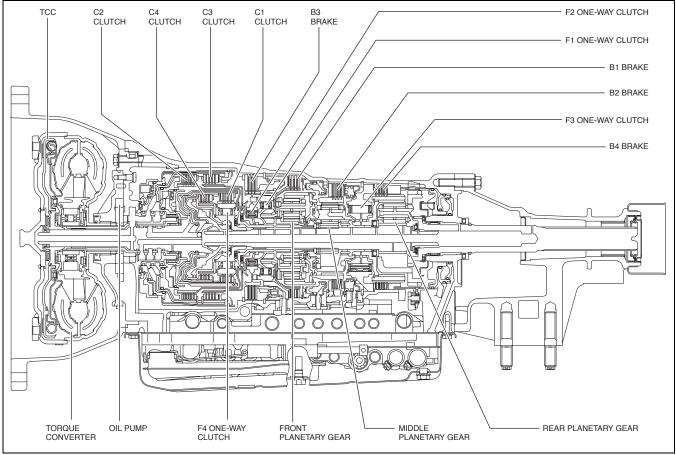
#### Suspension


- Trapezoidal front suspension tower bar adopted to improve the rigidity and handling stability. (MT)
  19-inch wheel and tire adopted for hard suspension.



ar8uun00000297

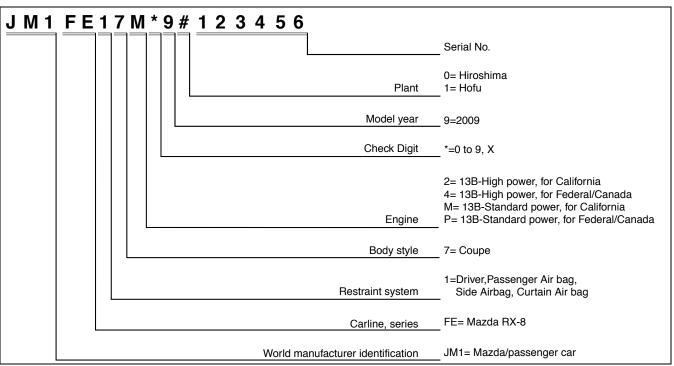
#### **Transmission**


- Manual transmission
  - Six-speed P66M-D manual transmission has been adopted.
  - A linked, triple-cone synchronizer mechanism has been adopted for 1st, 2nd, 3rd and 4th gears.
  - A guide plate type reverse lockout mechanism has been adopted.



ar8uun00000298

00-00


- Automatic transmission
  - SJ6A-EL type 6-speed AT has been adopted.
  - The Sport AT has been adopted.
  - Newly developed direct active matic control has been adopted.



ar8uun00000224

#### **VEHICLE IDENTIFICATION NUMBER (VIN) CODE**

id00000100200



ar8uuw00002204

id000000100300

#### **VEHICLE IDENTIFICATION NUMBER (VIN)**

JM1 FE172\*9# 400001-

JM1 FE174\*9# 400001—

JM1 FE17M\*9# 400001-

JM1 FE17P\*9# 400001-

00-00

# **ENGINE**

01-00

| OUTLINE[13B-MSP]                                                       | FUEL SYSTEM[13B-MSP] 01-14 EMISSION SYSTEM [13B-MSP] 01-16 CHARGING SYSTEM [13B-MSP] 01-17 CRUISE CONTROL SYSTEM[13B-MSP] 01-20 CONTROL SYSTEM [13B-MSP] 01-40 |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01-00 OUTLINE [13B-MSP]                                                |                                                                                                                                                                |
| ENGINE ABBREVIATIONS [13B-MSP]01-00-1 ENGINE FEATURES [13B-MSP]01-00-2 | Cooling System       01-00-2         Charging System       01-00-2         Cruise Control System       01-00-2                                                 |

### **ENGINE ABBREVIATIONS [13B-MSP]**

id010050100100

| ABDC | After Bottom Dead Center        |
|------|---------------------------------|
| APV  | Auxiliary Port Valve            |
| AT   | Automatic Transmission          |
| ATDC | After Top Dead Center           |
| BBDC | Before Bottom Dead Center       |
| BTDC | Before Top Dead Center          |
| CAN  | Controller Area Network         |
| CCM  | Comprehensive Component Monitor |
| DC   | Drive Cycle                     |
| EX   | Exhaust                         |
| FP   | Front Primary                   |
| FS   | Front Secondary                 |
| F/P  | Fuel Pump                       |
| HI   | High                            |
| IC   | Integrated Circuit              |
| IG   | Ignition                        |
| IN   | Intake                          |
| KAM  | Keep Alive Memory               |
| KOEO | Key On Engine Off               |
| KOER | Key On Engine Running           |
| LF   | Left Front                      |
| LH   | Left Hand                       |
| LO   | Low                             |
| LR   | Left Rear                       |
| L/F  | Leading Front                   |

### **OUTLINE [13B-MSP]**

| L/R  | Leading Rear                   |
|------|--------------------------------|
| MT   | Manual Transmission            |
| OCV  | Oil Control Valve              |
| RH   | Right Hand                     |
| RP   | Rear Primary                   |
| RR   | Right Rear                     |
| RS   | Rear Secondary                 |
| SSV  | Secondary Shutter Valve        |
| SW   | Switch                         |
| T/F  | Trailing Front                 |
| T/R  | Trailing Rear                  |
| VDI  | Variable Dynamic Effect Intake |
| VFAD | Variable Fresh Air Duct        |

### **ENGINE FEATURES [13B-MSP]**

id010050100200

#### **On-board Diagnostic**

| To meet OBD-II regulations | Diagnostic test modes changed                                                                                                                                       |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Improved serviceability    | <ul> <li>DTCs changed</li> <li>KOEO/KOER self-test function changed</li> <li>PID/DATA monitor function changed</li> <li>Simulation test function changed</li> </ul> |

#### Mechanical

| Reduced engine noise and vibration | Stationary gear changed (standard power) |
|------------------------------------|------------------------------------------|
| Improved engine torque             | Auxiliary port adopted (standard power)  |

#### Lubrication

| Improved lubricity      | <ul> <li>An electric type metering oil pump system adopted</li> <li>Center oil nozzles adopted which discharge oil to the center area of the rotor housings</li> <li>Oil pump changed</li> <li>Oil pan upper block adopted</li> </ul> |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Improved serviceability | Oil filter position changed                                                                                                                                                                                                           |

#### **Cooling System**

|                              | Radiator changed                                     |
|------------------------------|------------------------------------------------------|
| Improved cooling performance | Water pump changed     Cooling fan component changed |
|                              | Cooming tail component strainger                     |

### **Charging System**

| Improved generator output | Generator changed |
|---------------------------|-------------------|

#### **Cruise Control System**

| Improved driveability | Cruise control switch changed |
|-----------------------|-------------------------------|

#### **Control System**

| Improved engine torque and output | <ul><li>S-DAIS control changed</li><li>APV position sensor No.1, No.2 adopted</li></ul>                                                                                    |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Improved engine reliability       | <ul> <li>KS No.1, No.2 adopted</li> <li>Electrical fan control changed</li> <li>Fuel injection control changed</li> </ul>                                                  |
| Improved lubricity                | <ul> <li>Metering oil pump control changed</li> <li>Metering oil pump driver adopted</li> <li>Oil pressure control adopted</li> <li>Oil pressure sensor adopted</li> </ul> |

### **ENGINE SPECIFICATIONS [13B-MSP]**

|                                                                                            |                            |                          |                             | Specification                      |                                   |                            |                                 |                            |
|--------------------------------------------------------------------------------------------|----------------------------|--------------------------|-----------------------------|------------------------------------|-----------------------------------|----------------------------|---------------------------------|----------------------------|
|                                                                                            |                            |                          |                             |                                    | 200                               | 9МҮ                        | 2008                            | ВМҮ                        |
|                                                                                            |                            |                          | Item                        |                                    | 13B-MSP<br>(Standard<br>power)    | 13B-MSP<br>(High<br>power) | 13B-MSP<br>(Standard<br>power)  | 13B-MSP<br>(High<br>power) |
| MECHANICA                                                                                  | ۱L                         |                          |                             |                                    |                                   |                            | ,                               |                            |
| Engine type                                                                                |                            |                          |                             |                                    |                                   | tary                       | +                               | -                          |
| Rotor arrange                                                                              |                            |                          | er                          |                                    |                                   | r, longitudinal            | +                               | _                          |
| Combustion chamber type                                                                    |                            |                          | htub                        | +                                  |                                   |                            |                                 |                            |
| Displacement (ml {cc, cu in})                                                              |                            |                          | ·, 40.0}×2                  | +                                  |                                   |                            |                                 |                            |
| Compression ratio                                                                          |                            |                          | 0.0                         | +                                  |                                   |                            |                                 |                            |
| Compression                                                                                | pressu                     | re                       |                             | {kgf/cm <sup>2</sup> , psi} [rpm]) |                                   | 120}[250]                  | +                               |                            |
|                                                                                            |                            |                          | Primary port                | ATDO                               |                                   | <b>3</b> °                 | +                               |                            |
|                                                                                            |                            | Open                     | Secondary port              | ATDC                               |                                   | 2°                         | <b>+</b>                        |                            |
|                                                                                            | IN                         |                          | Auxiliary port              |                                    |                                   | 8°                         | -                               | 38°                        |
| Port timing                                                                                |                            | Close                    | Primary port Secondary port | ABDC                               |                                   | 5°<br>6°                   | 60°<br>45°                      | 65°<br>36°                 |
|                                                                                            |                            | Close                    | Auxiliary port              | ABDC                               |                                   | 0°                         | 40                              | 80°                        |
|                                                                                            |                            | Open                     | Auxiliary port              | BBDC                               |                                   | 0°                         | -<br>40°                        | 50°                        |
|                                                                                            | EX                         | Close                    |                             | BTDC                               |                                   | <u>,</u><br>}°             | +0 ←                            |                            |
| LUBRICATIO                                                                                 | N SYS                      |                          |                             | ыьс                                |                                   | ,                          |                                 |                            |
| Туре                                                                                       |                            |                          |                             |                                    | Force-f                           | ed type                    | +                               |                            |
| Oil pressure (reference value) (kPa {kgf/cm², psi} [oil temperature: 100°C {212°F}] [rpm]) |                            | 500 {5.10, 72.5} [3,000] |                             | 350 {3.57, 50.8} [3,000]           |                                   |                            |                                 |                            |
|                                                                                            | Type                       |                          |                             | [-[]/                              | Trochoid gear type                |                            | <b>←</b>                        |                            |
| Oil pump                                                                                   | Relief                     | valve ope                | ning pressure               | (kPa {kgf/cm², psi})               | 1,080 {11.01, 156.6}              |                            | 441—490<br>{4.5—5.0, 64.0—71.0} |                            |
|                                                                                            | Type                       |                          |                             | Full-flow, pa                      | per element                       | · ·                        |                                 |                            |
| Oil filter                                                                                 | Bypas                      | s pressure               | e                           | (kPa {kgf/cm <sup>2</sup> , psi})  | 140—180<br>{1.43—1.83, 20.3—26.1} |                            | 78—118<br>{0.8—1.2, 11.4—17.1}  |                            |
|                                                                                            |                            | Oil replac               | cement                      | (L {US qt, Imp qt})                | 4.2 {4.                           | 4, 3.7}                    | 3.3 {3.                         | 5, 2.9}                    |
| Oil capacity (approx. quar                                                                 | ntity)                     | Oil and o                |                             | (L {US qt, Imp qt})                | 4.4 {4.6, 3.9}                    |                            | 3.5 {3.7, 3.1}                  |                            |
| (approx. quar                                                                              | itity)                     | Engine overnaul          |                             | (L {US qt, Imp qt})                | 5.6 (5.9, 4.9)                    |                            | 4.7 {5.0, 4.1}                  |                            |
|                                                                                            |                            | Total (dry               | y engine)                   | (L {US qt, Imp qt})                | 6.3 (6.7, 5.5)                    | 7.0 {7.4, 6.2}             | 5.7 (6.0, 5.0) 6.4 (6.8, 5.6)   |                            |
| COOLING SY                                                                                 | YSTEM                      |                          |                             |                                    |                                   | 1. 1. 6 1                  | T                               |                            |
| Туре                                                                                       |                            |                          |                             |                                    | Water-cooled, forced circulation  |                            | +                               | _                          |
| Coolant capa                                                                               | city (ap                   | prox. qua                | ntity)                      | (L {US qt, Imp qt})                | MT: 10.0 {                        | {10, 8.6}<br>10.6, 8.80}   | 9.8 {10                         | 0, 8.6}                    |
| Water pump                                                                                 | Type                       |                          |                             |                                    | driv                              | V-ribbed belt-<br>ven      | <b>←</b>                        |                            |
|                                                                                            | Туре                       |                          |                             |                                    |                                   | ax                         | +                               | _                          |
| Thermostat Opening tem                                                                     |                            |                          |                             | (°C {F°})                          | 80-84 {176-183}                   |                            | +                               |                            |
|                                                                                            | Full-open temperature      |                          | (°C {F°})                   | •                                  | 203}                              | +                          |                                 |                            |
| Dodiotor                                                                                   | Full-open lift (mm {in})   |                          | •                           | } or more                          | ÷                                 |                            |                                 |                            |
| Radiator<br>Cooling                                                                        | Туре                       |                          |                             | -                                  | ated fin<br>0.75—1.05,            | +                          |                                 |                            |
| system cap                                                                                 |                            | alve openi               | ing pressure                | (kPa {kgf/cm <sup>2</sup> , psi})  | 10.7-                             | -14.9}                     | <b>←</b>                        |                            |
| Cooling fan                                                                                | Type<br>Numbe              | er of blade              | <br>es                      |                                    | Cooling fa                        | an No.1: 5                 | <del>+</del>                    |                            |
| 200                                                                                        |                            | diameter                 | <del></del>                 | (mm {in})                          | -                                 | an No.2: 7<br>11.8}        | · ·                             |                            |
|                                                                                            | Outer diameter (min {iii}) |                          |                             |                                    | ,                                 | `                          |                                 |                            |

01-00

### **OUTLINE [13B-MSP]**

|                                                           |                 |                       |                                    | Specification                                             |                            |                                |                            |  |
|-----------------------------------------------------------|-----------------|-----------------------|------------------------------------|-----------------------------------------------------------|----------------------------|--------------------------------|----------------------------|--|
|                                                           |                 |                       |                                    | 2009MY 2008MY                                             |                            |                                |                            |  |
|                                                           |                 | Item                  |                                    | 13B-MSP<br>(Standard<br>power)                            | 13B-MSP<br>(High<br>power) | 13B-MSP<br>(Standard<br>power) | 13B-MSP<br>(High<br>power) |  |
| <b>FUEL SYST</b>                                          | ЕМ              |                       |                                    |                                                           |                            |                                |                            |  |
|                                                           |                 | Туре                  |                                    | Multiple hole design                                      |                            | +                              | _                          |  |
| Injector                                                  |                 | Type of fuel delivery |                                    |                                                           | feed                       | +                              | _                          |  |
| _                                                         |                 | Type of drive         |                                    | Elect                                                     | tronic                     | +                              | _                          |  |
| pressure                                                  | julator control | (kl                   | Pa {kgf/cm <sup>2</sup> , psi})    |                                                           | {3.98, 56.6}               | +                              | _                          |  |
| Fuel pump ty                                              | •               |                       |                                    | Ele                                                       | ctric                      | +                              | _                          |  |
| Fuel tank capacity (approx. (L {US gal, Imp gal quantity) |                 | US gal, Imp gal})     | 64.0 {16                           | 5.9, 14.1}                                                | 60 {15.                    | 9, 13.2}                       |                            |  |
| Fuel type                                                 |                 | (unleaded h           | l premium<br>nigh-octane)<br>oline | +                                                         | _                          |                                |                            |  |
| EMISSION S                                                | SYSTEM          |                       |                                    |                                                           |                            | T                              |                            |  |
| AIR system                                                |                 |                       |                                    |                                                           | control valve              | +                              | _                          |  |
| Catalyst type                                             |                 |                       |                                    | (mond                                                     | y catalyst<br>olithic)     | +                              | _                          |  |
| EVAP contro                                               |                 |                       |                                    |                                                           | r design                   | +                              |                            |  |
| PCV system                                                |                 |                       |                                    | Closed                                                    | design                     | +                              |                            |  |
| CHARGING                                                  |                 |                       |                                    |                                                           |                            |                                |                            |  |
| Battery                                                   | Voltage         |                       | (V)                                |                                                           | 2                          |                                |                            |  |
|                                                           | Type and capac  | ity (5 hour rate)     | (A·h)                              | ` '                                                       |                            | 75D23                          |                            |  |
|                                                           | Output          |                       | (V–A)                              | 12—110                                                    |                            | 12-100                         |                            |  |
| Generator                                                 | Regulated volta | •                     |                                    | Controlle                                                 | d by PCM                   | ←                              |                            |  |
| Self diagnosis function                                   |                 |                       |                                    |                                                           |                            |                                |                            |  |
| IGNITION S                                                | YSTEM           |                       |                                    |                                                           |                            | ı                              |                            |  |
|                                                           | Туре            |                       |                                    | (D                                                        | ess Ignition<br>LI)        | +                              | _                          |  |
|                                                           | Spark advance   |                       |                                    |                                                           | tronic                     | +                              |                            |  |
| Ignition<br>system                                        | Firing order    |                       |                                    | T/F-L/F-<br>Except f<br>L/F-T/F-<br>(Independe<br>con     | •                          | +                              | _                          |  |
| Spark plug                                                | Туре            | Leading side          |                                    | (RE70<br>N3Y8 1<br>(RE70<br>N3Y9 1                        | 18 110A                    | ·                              | -                          |  |
|                                                           | Trailing side   |                       |                                    | N3H1 18 110D<br>(RE9B-T)*1,<br>N3Y1 18 110A<br>(RE9B-T)*1 |                            | <b>←</b>                       |                            |  |
| STARTING S                                                | SYSTEM          | •                     |                                    |                                                           |                            | •                              |                            |  |
| Starter                                                   | Туре            |                       |                                    | Coaxial ı                                                 | reduction                  | ·                              | -                          |  |
|                                                           | Output          |                       | (kW)                               | 2                                                         | .0                         | ·                              | _                          |  |
| CONTROL S                                                 | SYSTEM          |                       |                                    |                                                           |                            |                                |                            |  |
| Neutral switch                                            |                 |                       |                                    |                                                           | OFF                        | +                              | _                          |  |
|                                                           | CPP switch (MT) |                       |                                    | ON/OFF ←                                                  |                            |                                |                            |  |
| SSV switch                                                |                 |                       |                                    |                                                           | OFF<br>resistance          | +                              | _                          |  |
| APV position                                              | sensor          |                       |                                    | elen                                                      | nent                       | -                              | Hall element               |  |
| ECT sensor                                                |                 |                       |                                    | Thermistor ←                                              |                            | _                              |                            |  |

### **OUTLINE [13B-MSP]**

|                                         |                                | Specif                                                        | ication                        |                                    |  |          |  |
|-----------------------------------------|--------------------------------|---------------------------------------------------------------|--------------------------------|------------------------------------|--|----------|--|
|                                         | 2009                           | 9MY                                                           | 200                            | YM8                                |  |          |  |
| ltem                                    | 13B-MSP<br>(Standard<br>power) | 13B-MSP<br>(High<br>power)                                    | 13B-MSP<br>(Standard<br>power) | 13B-MSP<br>(High<br>power)         |  |          |  |
| IAT sensor                              | Therr                          | nistor                                                        |                                | <del>-</del>                       |  |          |  |
| TP sensor                               | Hall el                        | ement                                                         |                                | ←                                  |  |          |  |
| APP sensor                              | Hall el                        | ement                                                         |                                | ←                                  |  |          |  |
| MAF sensor (Inside MAF)                 | Hot-                           | wire                                                          |                                | ←                                  |  |          |  |
| A/F sensor                              | Zirconia elem air/fuel rat     |                                                               |                                | <b>←</b>                           |  |          |  |
| HO2S                                    | (Stoichiome                    | Zirconia element<br>(Stoichiometric air/fuel<br>ratio sensor) |                                | (Stoichiometric air/fuel ←         |  | <b>←</b> |  |
| BARO sensor (built into PCM)            | Piezoelecti                    | Piezoelectric element                                         |                                | <b>—</b>                           |  |          |  |
| KS                                      | Piezoelecti                    | Piezoelectric element                                         |                                | ←                                  |  |          |  |
| Eccentric shaft position sensor         | Magneti                        | Magnetic pickup                                               |                                | ←                                  |  |          |  |
| Oil pressure sensor                     | Piezoelecti                    | ric element                                                   |                                | _                                  |  |          |  |
| PCM temperature sensor (built into PCM) | Therr                          | nistor                                                        |                                | _                                  |  |          |  |
| Metering oil pump switch                | -                              | _                                                             |                                | /OFF                               |  |          |  |
| Brake switch                            | ON/                            | ON/OFF                                                        |                                | ←                                  |  |          |  |
| Throttle valve actuator                 | DC n                           | notor                                                         |                                | ←                                  |  |          |  |
| APV motor                               | DC n                           | notor                                                         | _                              | DC motor                           |  |          |  |
| Fuel injector (primary 1)               |                                | Multiple hole type (12 holes)                                 |                                | <b>—</b>                           |  |          |  |
| Fuel injector (secondary)               | Multiple hole                  | Multiple hole type (4 holes) ←                                |                                | <b>—</b>                           |  |          |  |
| Fuel injector (primary 2)               | -                              | -                                                             | _                              | Multiple hole<br>type<br>(4 holes) |  |          |  |
| Stepping motor (in metering oil pump)   | -                              |                                                               | Steppii                        | ng motor                           |  |          |  |

#### Engine oil specification

| Item                 | U.S.A. and CANADA                  | Except U.S.A. and CANADA                |
|----------------------|------------------------------------|-----------------------------------------|
| Engine oil grade     | FOR GASOLINE E ENGINES A CERTIFIED | SAE 5W-20 5 CONSERVED CONSERVED (ILSAC) |
|                      |                                    | API SL, SM or ILSAC                     |
| Engine oil viscosity | ţ                                  | 5W-20                                   |

<sup>\*1 :</sup> Standard equipment
\*2 : Hot type plug: Available only for customers who often drive their car at very low speed which causes the plugs to foul easily.

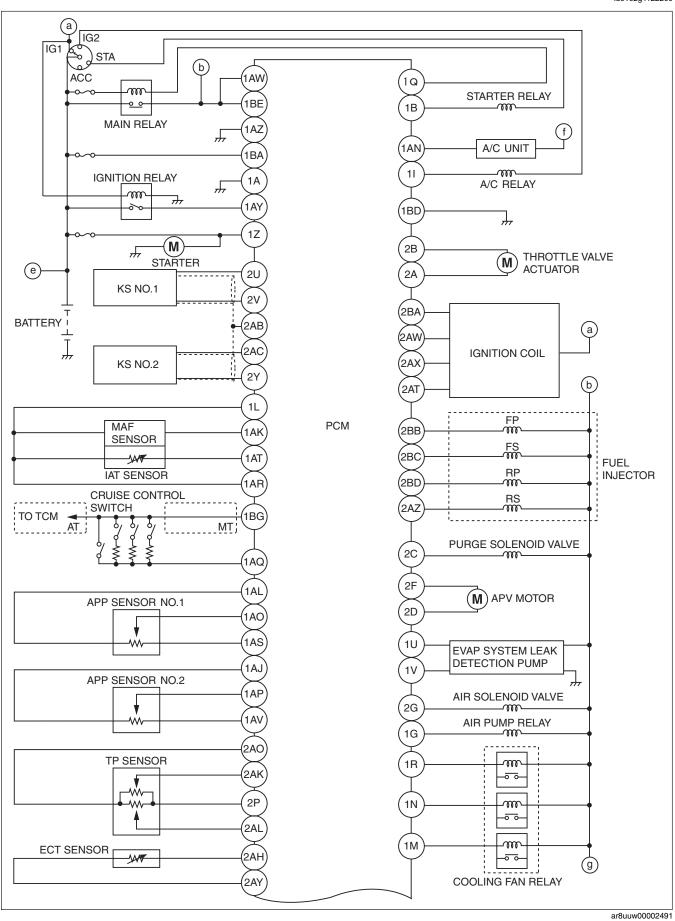
# 01-02 ON-BOARD DIAGNOSTIC [13B-MSP]

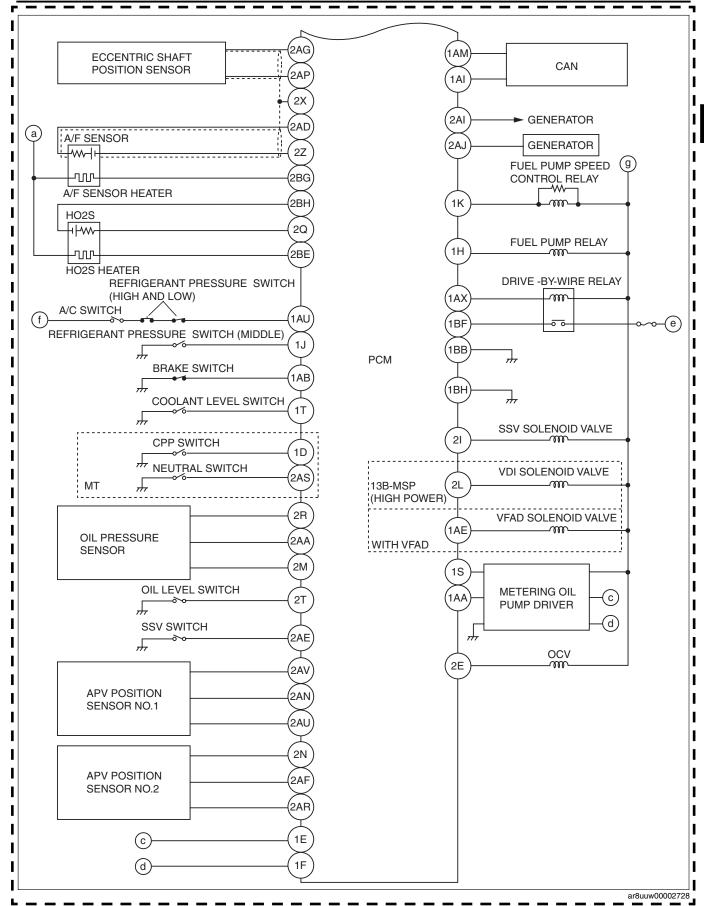
| ON-BOARD DIAGNOSTIC OUTLINE       | Sending Emission-related          |
|-----------------------------------|-----------------------------------|
| [13B-MSP]01-02-1                  | Malfunction Code01-02-6           |
| Features                          | Sending Intermittent Monitoring   |
| ON-BOARD DIAGNOSTIC WIRING        | System Test Results               |
| DIAGRAM [13B-MSP] 01-02-2         | DTC DETECTION LOGIC AND           |
| ON-BOARD DIAGNOSTIC SYSTEM        | CONDITIONS [13B-MSP]01-02-10      |
| TEST MODE [13B-MSP] 01-02-4       | KOEO/KOER SELF-TEST               |
| Sending Diagnostic Data 01-02-4   | [13B-MSP]01-02-15                 |
| Sending Freeze Frame Data 01-02-5 | PID/DATA MONITOR AND RECORD       |
| •                                 | [13B-MSP]01-02-18                 |
|                                   | SIMULATION TEST [13B-MSP]01-02-20 |

### 01-02

id0102g1100100

#### ON-BOARD DIAGNOSTIC OUTLINE [13B-MSP]


#### .


#### **Features**

| To meet OBD-II regulations | Diagnostic test modes changed                                                                                                                                       |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Improved serviceability    | <ul> <li>DTCs changed</li> <li>KOEO/KOER self-test function changed</li> <li>PID/DATA monitor function changed</li> <li>Simulation test function changed</li> </ul> |

#### **ON-BOARD DIAGNOSTIC WIRING DIAGRAM [13B-MSP]**

id0102g1122200





#### 2009 Mazda RX-8 Service Highlights (3452-1U-08C) ON-BOARD DIAGNOSTIC [13B-MSP]

#### ON-BOARD DIAGNOSTIC SYSTEM TEST MODE [13B-MSP]

id0102g1100200

#### **Sending Diagnostic Data** PID data monitor

• The PID data monitor items are shown below.

#### PID data monitor table

N/A: Not applicable

| Full name                                 | 1471. Not applicab |                      |
|-------------------------------------------|--------------------|----------------------|
| 2009MY                                    | 2008MY             | Unit                 |
| Monitor status since DTCs cleared         | ←                  | _                    |
| Fuel system loop status                   | ←                  | Refer to list below. |
| LOAD                                      | <b>←</b>           | %                    |
| ECT                                       | <b>←</b>           | °C °F                |
| Short term fuel trim                      | ←                  | %                    |
| Long term fuel trim                       | ←                  | %                    |
| Engine speed                              | ←                  | rpm                  |
| Vehicle speed                             | ←                  | km/h mph             |
| Spark advance                             | <b>←</b>           | 0                    |
| IAT                                       | <b>←</b>           | °C °F                |
| MAF                                       | ←                  | g/s                  |
| Absolute TP                               | <b>←</b>           | %                    |
| AIR control status                        | ←                  | _                    |
| A/F sensor, HO2S location                 | <b>←</b>           | _                    |
|                                           |                    | V                    |
| HO2S output                               | <b>←</b>           | %                    |
| OBD requirement according to vehicle      | ,                  |                      |
| design                                    | <b>←</b>           | _                    |
| Time since engine start                   | ←                  | S                    |
| Distance travelled while MIL is activated | <b>←</b>           | km mile              |
| Purge solenoid valve control signal       | <b>←</b>           | %                    |
| Fuel tank level                           | <b>←</b>           | %                    |
| Number of warm-ups since DTCs cleared     | <b>←</b>           | -                    |
| Distance travelled since DTCs cleared     | <b>←</b>           | km mile              |
| BARO                                      | <b>←</b>           | kPa                  |
| A/F sensor output current                 | <b>←</b>           | mA                   |
| Estimated catalyst converter temperature  | ←                  | °C °F                |
| Monitor status this driving cycle         | <b>←</b>           | _                    |
| PCM power supply voltage                  | <b>←</b>           | V                    |
| Absolute load value                       | <b>←</b>           | %                    |
| Command equivalence ratio                 | ←                  | _                    |
| Relative TP                               | <b>←</b>           | %                    |
| Ambient air temperature                   | <b>←</b>           | °C °F                |
| TP from TP sensor No.2                    | <b>←</b>           | %                    |
| APP from APP sensor No.1                  | <b>←</b>           | %                    |
| APP from APP sensor No.2                  | <b>←</b>           | %                    |
| Throttle actuator control signal          | <b>←</b>           | %                    |
|                                           |                    |                      |

#### Meaning of fuel system loop status

- The following information is displayed on the tester.
  - Feedback operating: A/F sensor, HO2S being used for feedback is normal.
     Feedback stops: ECT is lower than the determined feedback zone.

  - Feedback stops: Open loop due to driving condition.
  - Feedback stops: Open loop due to detected system fault.

#### On-board system readiness test

- The items supported by the on-board system readiness test are shown below.
  - **Continuous monitoring system**
  - A/F sensor heater, HO2S heater
  - Fuel system
  - Misfire
  - CCM

#### Intermittent monitoring system

- A/F sensor, HO2S
- AIR system
- Catalyst
- EVAP system
- Thermostat

#### **Sending Freeze Frame Data**

• The Freeze Frame Data monitor items are shown below.

#### Freeze Frame Data monitor table

N/A: Not applicable

| Full names                                          |          |             |        |
|-----------------------------------------------------|----------|-------------|--------|
| 2009MY                                              | 2008MY   | Unit        |        |
| DTC that caused required Freeze Frame               | <b>←</b> | _           | _      |
| Data storage                                        | <u> </u> |             |        |
| Fuel system loop status                             | <b>←</b> | Refer to li |        |
| LOAD                                                | <b>←</b> | %           |        |
| ECT                                                 | <b>←</b> | °C          | °F     |
| Short term fuel trim                                | <b>←</b> | %           |        |
| Long term fuel trim                                 | <b>←</b> | %           | ,<br>> |
| Engine speed                                        | <b>←</b> | rpi         | m      |
| Vehicle speed                                       | <b>←</b> | km/h        | mph    |
| Spark advance                                       | <b>←</b> | 0           |        |
| IAT                                                 | <b>←</b> | °C          | °F     |
| MAF                                                 | <b>←</b> | g/          | s      |
| Absolute TP                                         | <b>←</b> | %           | ,<br>o |
| AIR control status                                  | <b>←</b> | _           | -      |
| HO2S output                                         | <b>←</b> | V           |        |
| Time a single survivor adapt                        |          | %           |        |
| Time since engine start                             | <b>←</b> | S           |        |
| Purge solenoid valve control signal Fuel tank level | <b>←</b> | 9/          |        |
|                                                     | <b>←</b> | %           |        |
| Number of warm-ups since DTCs cleared               | <b>←</b> |             |        |
| Distance travelled since DTCs cleared               | <b>←</b> | km          | mile   |
| BARO                                                | <b>←</b> | kP          |        |
| Estimated catalyst converter temperature            | <b>←</b> | °C          | °F     |
| PCM power supply voltage                            | <b>←</b> | V           |        |
| Command equivalence ratio                           | <b>←</b> | -           |        |
| Absolute load value                                 | <b>←</b> | %           |        |
| Relative TP                                         | <b>←</b> | %           |        |
| Ambient air temperature                             | <b>←</b> | °C          | °F     |
| TP from TP sensor No.2                              | <b>←</b> | %           |        |
| APP from APP sensor No.1                            | <b>←</b> | %           |        |
| APP from APP sensor No.2                            | <b>←</b> | %           | ,<br>o |
| Throttle actuator control signal                    | <b>←</b> | %           | ,<br>o |

#### Meaning of fuel system loop status

- The following information is displayed on the tester.
  - Feedback operating: A/F sensor, HO2S being used for feedback is normal.
  - Feedback stops: ECT is lower than the determined feedback zone.
  - Feedback stops: Open loop due to driving condition.
  - Feedback stops: Open loop due to detected system fault.

01-02

# Sending Emission-related Malfunction Code • The DTCs are shown below. DTC table

N/A: Not applicable

| DTC                 | No.      |                                                               |     | Generator        |    |                                      |                     | applicable      |
|---------------------|----------|---------------------------------------------------------------|-----|------------------|----|--------------------------------------|---------------------|-----------------|
| 2009MY              | 2008MY   | Condition                                                     | MIL | warning<br>light | DC | Monitor item*1                       | Self test<br>type*2 | Memory function |
| B1342               | N/A      | PCM malfunction                                               |     | _                | l  | _                                    | C, O                | _               |
| P0030               | <b>←</b> | A/F sensor heater control circuit problem                     | ON  | _                | 2  | A/F sensor<br>heater, HO2S<br>heater | С                   | ×               |
| P0031               | <b>←</b> | A/F sensor heater control circuit low input                   | ON  | _                | 2  | A/F sensor<br>heater, HO2S<br>heater | C, O, R             | ×               |
| P0032               | <b>←</b> | A/F sensor heater control circuit high input                  | ON  | _                | 2  | A/F sensor<br>heater, HO2S<br>heater | C, R                | ×               |
| P0037               | <b>←</b> | HO2S heater control circuit low input                         | ON  | _                | 2  | A/F sensor<br>heater, HO2S<br>heater | C, O, R             | ×               |
| P0038               | <b>←</b> | HO2S heater control circuit high input                        | ON  | _                | 2  | A/F sensor<br>heater, HO2S<br>heater | C, R                | ×               |
| P0076* <sup>5</sup> | <b>←</b> | VDI solenoid valve control circuit low input                  | OFF | _                | 2  | Other                                | C, O, R             | ×               |
| P0077* <sup>5</sup> | <b>←</b> | VDI solenoid valve control circuit high input                 | OFF | _                | 2  | Other                                | С                   | ×               |
| P0101               | <b>←</b> | MAF sensor circuit range/<br>performance problem              | ON  | _                | 2  | ССМ                                  | С                   | ×               |
| P0102               | <b>←</b> | MAF sensor circuit low input                                  | ON  | _                | 1  | CCM                                  | C, R                | ×               |
| P0103               | <b>←</b> | MAF sensor circuit high input                                 | ON  | _                | 1  | CCM                                  | C, O, R             | ×               |
| P0107               | <b>←</b> | BARO sensor circuit low input                                 | ON  | _                | 1  | CCM                                  | C, O, R             | ×               |
| P0108               | ←        | BARO sensor circuit high input                                | ON  | _                | 1  | CCM                                  | C, O, R             | ×               |
| P0111               | <b>←</b> | IAT sensor circuit range/performance problem                  | ON  | _                | 2  | ССМ                                  | С                   | ×               |
| P0112               | <b>←</b> | IAT sensor circuit low input                                  | ON  | ON               | 1  | CCM                                  | C, O, R             | ×               |
| P0113               | <b>←</b> | IAT sensor circuit high input                                 | ON  | ON               | 1  | CCM                                  | C, O, R             | ×               |
| P0116               | <b>←</b> | ECT sensor circuit range/<br>performance problem              | ON  | _                | 2  | Engine cooling system                | С                   | ×               |
| P0117               | <b>←</b> | ECT sensor circuit low input                                  | ON  | _                | 1  | CCM                                  | C, O, R             | ×               |
| P0118               | <b>←</b> | ECT sensor circuit high input                                 | ON  | _                | 1  | CCM                                  | C, O, R             | ×               |
| P0122               | <b>←</b> | TP sensor No.1 circuit low input                              | ON  | _                | 1  | CCM                                  | C, O, R             | ×               |
| P0123               | <b>←</b> | TP sensor No.1 circuit high input                             | ON  | _                | 1  | CCM                                  | C, O, R             | ×               |
| P0125               | <b>←</b> | Insufficient coolant temperature for closed loop fuel control | ON  | _                | 2  | Engine cooling system                | С                   | ×               |
| P0126               | <b>←</b> | Insufficient coolant temperature for stable operation         | ON  | _                | 2  | Thermostat                           | С                   | ×               |
| P0130               | <b>←</b> | A/F sensor circuit problem                                    | ON  | _                | 2  | A/F sensor,<br>HO2S                  | C, R                | ×               |
| P0131               | <b>←</b> | A/F sensor circuit low input                                  | ON  | _                | 2  | A/F sensor,<br>HO2S                  | C, R                | ×               |
| P0132               | <b>←</b> | A/F sensor circuit high input                                 | ON  | _                | 2  | A/F sensor,<br>HO2S                  | C, R                | ×               |
| P0133               | <b>←</b> | A/F sensor circuit slow response                              | ON  | _                | 2  | A/F sensor,<br>HO2S                  | С                   | ×               |
| P0134               | <b>←</b> | A/F sensor no activity detected                               | ON  | _                | 2  | A/F sensor,<br>HO2S                  | C, R                | ×               |
| P0137               | <b>←</b> | HO2S circuit low input                                        | ON  | _                | 2  | A/F sensor,<br>HO2S                  | С                   | ×               |
| P0138               | <b>←</b> | HO2S circuit high input                                       | ON  | _                | 2  | A/F sensor,<br>HO2S                  | C, O, R             | ×               |

| DTC                 | No.      |                                                                   |              | Generator        |        |                            | Self test | Memory   |
|---------------------|----------|-------------------------------------------------------------------|--------------|------------------|--------|----------------------------|-----------|----------|
| 2009MY              | 2008MY   | Condition                                                         | MIL          | warning<br>light | DC     | Monitor item* <sup>1</sup> | type*2    | function |
| P0139               | <b>←</b> | HO2S circuit slow response                                        | ON           | _                | 2      | A/F sensor,<br>HO2S        | С         | ×        |
| P0171               | <b>←</b> | System too lean                                                   | ON           | _                | 2      | Fuel system                | C, R      | ×        |
| P0172               | <b>←</b> | System too rich                                                   | ON           | _                | 2      | Fuel system                | C, R      | ×        |
| P0222               | <b>←</b> | TP sensor No.2 circuit low input                                  | ON           | _                | 1      | CCM                        | C, O, R   | ×        |
| P0223               | <b>←</b> | TP sensor No.2 circuit high input                                 | ON           | _                | 1      | CCM                        | C, O, R   | ×        |
| P0300               | <b>←</b> | Random misfire detected                                           | Flash/<br>ON | _                | 1 or 2 | Misfire                    | С         | ×        |
| P0301               | <b>←</b> | Front rotor misfire detected                                      | Flash/<br>ON | _                | 1 or 2 | Misfire                    | С         | ×        |
| P0302               | <b>←</b> | Rear rotor misfire detected                                       | Flash/<br>ON | _                | 1 or 2 | Misfire                    | С         | ×        |
| P0327               | ←        | KS No.1 circuit low input                                         | ON           | _                | 1      | CCM                        | C, O, R   | ×        |
| P0328               | <b>←</b> | KS No.1 circuit high input                                        | ON           | _                | 1      | CCM                        | C, O, R   | ×        |
| P0332               | N/A      | KS No.2 circuit low input                                         | ON           | _                | 1      | CCM                        | C, O, R   | ×        |
| P0333               | N/A      | KS No.2 circuit high input                                        | ON           | _                | 1      | CCM                        | C, O, R   | ×        |
| P0335               | <b>←</b> | Eccentric shaft position sensor circuit problem                   | ON           | _                | 1      | ССМ                        | С         | ×        |
| P0336               | <b>←</b> | Eccentric shaft position sensor circuit range/performance problem | ON           | _                | 1      | ССМ                        | C, R      | ×        |
| P0410               | <b>←</b> | Secondary air injection system problem                            | ON           | _                | 2      | AIR system                 | C, R      | ×        |
| P0411               | <b>←</b> | Secondary air injection system incorrect upstream flow            | ON           | _                | 2      | AIR system                 | С         | ×        |
| P0420               | <b>←</b> | Catalyst system efficiency below threshold                        | ON           | _                | 2      | Catalyst                   | С         | ×        |
| P0441               | <b>←</b> | EVAP system incorrect purge flow                                  | ON           | _                | 2      | EVAP system                | C, R      | ×        |
| P0442               | <b>←</b> | EVAP system leak detected (small leak)                            | ON           | _                | 2      | EVAP system                | C, R      | ×        |
| P0443               | ←        | Purge solenoid valve circuit problem                              | ON           | _                | 2      | CCM                        | C, O, R   | ×        |
| P0446               | <b>←</b> | EVAP system vent control circuit problem                          | ON           | _                | 2      | EVAP system                | C, R      | ×        |
| P0455               | <b>←</b> | EVAP system leak detected (large leak)                            | ON           | _                | 2      | EVAP system                | С         | ×        |
| P0456* <sup>3</sup> | <b>←</b> | EVAP system leak detected (very small leak)                       | ON           | _                | 2      | EVAP system                | С         | ×        |
| P0461               | <b>←</b> | Fuel gauge sender unit (main) circuit range/performance problem   | ON           | _                | 2      | ССМ                        | С         | ×        |
| P0462               | <b>←</b> | Fuel gauge sender unit (main) circuit low input                   | ON           | _                | 2      | ССМ                        | C, R      | ×        |
| P0463               | <b>←</b> | Fuel gauge sender unit (main) circuit high input                  | ON           | _                | 2      | ССМ                        | C, R      | ×        |
| P0480               | <b>←</b> | Cooling fan relay No.1 control circuit problem                    | OFF          | _                | 2      | Other                      | C, O, R   | ×        |
| P0481               | <b>←</b> | Cooling fan relay No.2 and No.3 control circuit problem           | OFF          | _                | 2      | Other                      | C, O, R   | ×        |
| P0482               | N/A      | Cooling fan relay No.4 and No.5 control circuit problem           | OFF          | _                | 2      | Other                      | C, O, R   | ×        |
| P0500               | <b>←</b> | VSS circuit problem                                               | ON           | _                | 2      | ССМ                        | С         | ×        |
| P0505               | <b>←</b> | Idle air control system problem                                   | OFF          | _                |        | <u> </u>                   | R         | _        |
| P0506               | <b>←</b> | Idle air control system RPM lower than expected                   | ON           | _                | 2      | ССМ                        | С         | ×        |
| P0507               | <b>←</b> | Idle air control system RPM higher than expected                  | ON           | _                | 2      | ССМ                        | С         | ×        |
| P050A               | <b>←</b> | Cold start idle air control system performance                    | ON           | _                | 2      | CSERS                      | С         | ×        |
| P0522               | N/A      | Oil pressure sensor low input                                     | OFF          | _                | 1      | Other                      | C, O, R   | ×        |

| DTC                 | No.      |                                                              |                   | Generator        |    |                | Self test | Memory   |
|---------------------|----------|--------------------------------------------------------------|-------------------|------------------|----|----------------|-----------|----------|
| 2009MY              | 2008MY   | Condition                                                    | MIL               | warning<br>light | DC | Monitor item*1 | type*2    | function |
| P0523               | N/A      | Oil pressure sensor high input                               | OFF               | _                | 1  | Other          | C, O, R   | ×        |
| P0562               | ←        | System voltage low (KAM)                                     | ON                | _                | 1  | CCM            | C, O, R   | ×        |
| P0564               | <b>←</b> | Cruise control switch input circuit problem                  | OFF               | _                | 1  | Other          | C, O, R   | ×        |
| P0571               | <b>←</b> | Brake switch input circuit problem                           | OFF               | _                | 1  | Other          | C, O, R   | ×        |
| P0601               | ←        | PCM memory check sum error                                   | ON                | _                | 1  | CCM            | C, O, R   | ×        |
| P0602               | <b>←</b> | PCM programming error                                        | ON                | _                | 1  | ССМ            | C, O, R   | ×        |
| P0604               | <b>←</b> | PCM random access memory error                               | ON                | _                | 1  | CCM            | C, O, R   | ×        |
| P0606               | N/A      | PCM processor error                                          | ON                | _                | 1  | CCM            | C, O, R   | ×        |
| P0610               | <b>←</b> | PCM vehicle configuration error                              | ON                | _                | 1  | ССМ            | C, O, R   | ×        |
| P0638               | <b>←</b> | Throttle actuator control circuit range/performance problem  | ON                | _                | 1  | CCM            | С         | ×        |
| P0661               | <b>←</b> | SSV solenoid valve control circuit low                       | ON                | _                | 2  | CCM            | C, O, R   | ×        |
| P0662               | ←        | SSV solenoid valve control circuit high                      | ON                | _                | 2  | ССМ            | С         | ×        |
| P0703               | ←        | Brake switch input circuit problem                           | ON                | _                | 2  | CCM            | С         | ×        |
| P0704* <sup>4</sup> | ←        | CPP switch input circuit problem                             | ON                | _                | 2  | ССМ            | С         | ×        |
| P0850*4             | ←        | Neutral switch input circuit problem                         | ON                | _                | 2  | CCM            | С         | ×        |
| P1260               | <b>←</b> | Immobilizer system problem                                   | OFF               | _                | 1  | Other          | C, O      | _        |
| P1680               | N/A      | OCV circuit low input                                        | OFF*6             | _                | 1  | Other          | C, O, R   | ×        |
| P1681               | N/A      | OCV circuit high input                                       | OFF <sup>*6</sup> | _                | 1  | Other          | C, O, R   | ×        |
| P1682               | N/A      | Metering oil pump No.1 circuit low input                     | OFF <sup>*6</sup> | _                | 1  | Other          | C, R      | ×        |
| P1683               | N/A      | Metering oil pump No.1 circuit high input                    | OFF <sup>*6</sup> | _                | 1  | Other          | C, R      | ×        |
| P1684               | N/A      | Metering oil pump oil pressure sensor  –oil pressure is low  | OFF*6             | _                | 1  | Other          | С         | ×        |
| P1685               | N/A      | Metering oil pump oil pressure sensor  –oil pressure is high | OFF*6             | _                | 1  | Other          | С         | ×        |
| P1686               | <b>←</b> | Metering oil pump No.2 circuit low input                     | OFF <sup>*6</sup> | _                | 1  | Other          | C, R      | ×        |
| P1687               | <b>←</b> | Metering oil pump No.2 circuit high input                    | OFF*6             | _                | 1  | Other          | C, R      | ×        |
| N/A                 | P1688    | Metering oil pump control circuit initial check problem      | ON                | _                | 1  | Other          | C, R      | ×        |
| P2004               | <b>←</b> | APV stuck open (No.1)                                        | ON                | _                | 2  | CCM            | C, O, R   | ×        |
| P2005               | N/A      | APV stuck open (No.2)                                        | ON                | _                | 2  | CCM            | C, O, R   | ×        |
| N/A                 | P2006    | APV motor control circuit IC problem                         | ON                | _                | 2  | CCM            | С         | ×        |
| P2009               | <b>←</b> | APV motor control circuit low input                          | ON                | _                | 2  | CCM            | C, O, R   | ×        |
| P2010               | <b>←</b> | APV motor control circuit high input                         | ON                | _                | 2  | ССМ            | C, O, R   | ×        |
| N/A                 | P2016    | APV position sensor circuit problem low input                | ON                | _                | 2  | ССМ            | C, O, R   | ×        |
| N/A                 | P2017    | APV position sensor circuit problem                          | ON                | _                | 2  | CCM            | C, O, R   | ×        |
| P2067               | ←        | Fuel gauge sender unit (sub) circuit low input               | ON                | _                | 2  | ССМ            | C, R      | ×        |
| P2068               | <b>←</b> | Fuel gauge sender unit (sub) circuit high input              | ON                | _                | 2  | ССМ            | C, R      | ×        |
| P2070               | <b>←</b> | SSV stuck open                                               | ON                | _                | 2  | CCM            | C, O, R   | ×        |
| P2096               | <b>←</b> | Target A/F feedback system too lean                          | ON                |                  | 2  | Fuel system    | С         | ×        |
| P2097               | <b>←</b> | Target A/F feedback system too rich                          | ON                | _                | 2  | Fuel system    | С         | ×        |
| P2101               | N/A      | Throttle actuator circuit range/<br>performance              | ON                | _                | 1  | ССМ            | С         | ×        |
| N/A                 | P2102    | Throttle actuator power supply line circuit low input        | ON                | _                | 1  | ССМ            | C, O, R   | ×        |

| DTC No. |          |                                                                               |     | Generator        |    |                            | Self test | Memory   |
|---------|----------|-------------------------------------------------------------------------------|-----|------------------|----|----------------------------|-----------|----------|
| 2009MY  | 2008MY   | Condition                                                                     | MIL | warning<br>light | DC | Monitor item* <sup>1</sup> | type*2    | function |
| N/A     | P2103    | Throttle actuator power supply line circuit high input                        | ON  | _                | 1  | ССМ                        | C, O, R   | ×        |
| N/A     | P2106    | Throttle actuator control system–<br>forced limited power                     | ON  | _                | 1  | ССМ                        | С         | ×        |
| P2107   | <b>←</b> | Throttle actuator control module processor error                              | ON  | _                | 1  | ССМ                        | C, O, R   | ×        |
| P2108   | <b>←</b> | Throttle actuator control module performance error                            | ON  | _                | 1  | ССМ                        | C, O, R   | ×        |
| P2109   | <b>←</b> | TP sensor minimum stop range/<br>performance problem                          | ON  | _                | 1  | ССМ                        | C, O, R   | ×        |
| P2112   | <b>←</b> | Throttle actuator control system range/performance problem                    | ON  | _                | 1  | ССМ                        | C, O, R   | ×        |
| P2119   | <b>←</b> | Throttle actuator control throttle body range/performance problem             | ON  | _                | 2  | ССМ                        | C, O, R   | ×        |
| P2122   | <b>←</b> | APP sensor No.1 circuit low input                                             | ON  | _                | 1  | CCM                        | C, O, R   | ×        |
| P2123   | <b>←</b> | APP sensor No.1 circuit high input                                            | ON  | _                | 1  | CCM                        | C, O, R   | ×        |
| P2127   | <b>←</b> | APP sensor No.2 circuit low input                                             | ON  | _                | 1  | CCM                        | C, O, R   | ×        |
| P2128   | <b>←</b> | APP sensor No.2 circuit high input                                            | ON  | _                | 1  | CCM                        | C, O, R   | ×        |
| P2135   | <b>←</b> | TP sensor No.1/No.2 voltage correlation problem                               | ON  | _                | 1  | ССМ                        | C, O, R   | ×        |
| N/A     | P2136    | TP sensor No.1/No.3 voltage correlation problem                               | ON  | _                | 1  | ССМ                        | C, O, R   | ×        |
| P2138   | <b>←</b> | APP sensor No.1/No.2 voltage correlation problem                              | ON  | _                | 1  | ССМ                        | C, O, R   | ×        |
| P2195   | <b>←</b> | A/F sensor signal stuck lean                                                  | ON  | _                | 2  | A/F sensor,<br>HO2S        | С         | ×        |
| P2196   | <b>←</b> | A/F sensor signal stuck rich                                                  | ON  | _                | 2  | A/F sensor,<br>HO2S        | С         | ×        |
| P2257   | <b>←</b> | AIR pump relay control circuit low                                            | ON  | _                | 2  | AIR system                 | C, O, R   | ×        |
| P2258   | <b>←</b> | AIR pump relay control circuit high                                           | ON  | _                | 2  | AIR system                 | C, R      | ×        |
| P2259   | <b>←</b> | AIR solenoid valve control circuit low                                        | ON  | _                | 2  | AIR system                 | C, O, R   | ×        |
| P2260   | <b>←</b> | AIR solenoid valve control circuit high                                       | ON  | _                | 2  | AIR system                 | C, R      | ×        |
| P2270   | <b>←</b> | HO2S signal stuck lean                                                        | ON  | _                | 2  | A/F sensor,<br>HO2S        | С         | ×        |
| P2271   | <b>←</b> | HO2S signal stuck rich                                                        | ON  | _                | 2  | A/F sensor,<br>HO2S        | С         | ×        |
| P2401   | <b>←</b> | EVAP system leak detection pump control circuit low                           | ON  | _                | 2  | EVAP system                | C, R      | ×        |
| P2402   | <b>←</b> | EVAP system leak detection pump control circuit high                          | ON  | _                | 2  | EVAP system                | C, R      | ×        |
| P2404   | <b>←</b> | EVAP system leak detection pump<br>sense circuit range/performance<br>problem | ON  | _                | 2  | EVAP system                | C, R      | ×        |
| P2405   | <b>←</b> | EVAP system leak detection pump sense circuit low                             | ON  | _                | 2  | EVAP system                | C, R      | ×        |
| P2407   | <b>←</b> | EVAP system leak detection pump sense circuit intermittent/erratic problem    | ON  | _                | 2  | EVAP system                | C, R      | ×        |
| P2502   | <b>←</b> | Charging system voltage problem                                               | OFF | ON               | 1  | Other                      | C, R      | ×        |
| P2503   | <b>←</b> | Charging system voltage low                                                   | OFF | ON               | 1  | Other                      | C, R      | ×        |
| P2504   | <b>←</b> | Charging system voltage high                                                  | OFF | ON               | 1  | Other                      | C, R      | ×        |

<sup>\*1 :</sup> Indicates the applicable item in the On-Board System Readiness Test as defined by CARB.
\*2 : C: CMDTC self test, O: KOEO self test, R: KOER self test
\*3 : California emission regulation applicable model
\*4 : MT

<sup>\*5 : 13</sup>B-MSP (high power)
\*6 : Oil level warning light flashes

#### **Sending Intermittent Monitoring System Test Results**

• The items supported by the sending intermittent monitoring system are shown below.

| OBD mor | nitor ID | Test ID | Description                                                                                   | Related     | Scaling | Unit         |
|---------|----------|---------|-----------------------------------------------------------------------------------------------|-------------|---------|--------------|
| 2009MY  | 2008MY   | Test ID | Description                                                                                   | system      | ID      | Offic        |
| 01      | <b>←</b> | 80      | Response lean to rich                                                                         |             | 20      | Ratio        |
| 01      | <b>←</b> | 81      | Response rich to lean                                                                         | A/F sensor  | 20      | Ratio        |
| 01      | <b>←</b> | 82      | Response lean to rich delayed                                                                 | A/F Selisui | 10      | Time         |
| 01      | <b>←</b> | 83      | Response rich to lean delayed                                                                 |             | 10      | Time         |
| 02      | <b>←</b> | 03      | Low sensor voltage for switch time calculation                                                |             | 0A      | Voltage      |
| 02      | <b>←</b> | 04      | High sensor voltage for switch time calculation                                               | HO2S        | 0A      | Voltage      |
| 02      | <b>←</b> | 05      | Rich to lean sensor switching time                                                            | 11023       | 10      | Time         |
| 02      | N/A      | 80      | Response timeout                                                                              |             | 10      | Time         |
| 21      | <b>←</b> | 80      | Rear to front switching ratio                                                                 | Catalyst    | 20      | Ratio        |
| 3A      | <b>←</b> | 80      | Large leak check                                                                              |             | 0D      | Current      |
| 3B      | <b>←</b> | 80      | Small leak check                                                                              |             | 0D      | Current      |
| 3C*1    | <b>←</b> | 80      | Very small leak check                                                                         | EVAP system | 05      | Raw<br>value |
| 3D      | <b>←</b> | 80      | Purge flow monitor                                                                            |             | 0D      | Current      |
| 71      | <b>←</b> | 80      | Secondary air functional check                                                                |             | 10      | Time         |
| 71      | <b>←</b> | 81      | Secondary air flow rate check                                                                 | AIR system  | 86      | Raw<br>value |
| A2      | <b>←</b> | 0B      | Exponentially weighted moving average misfire counts for last 10 driving cycles (front rotor) |             | 24      | Counts       |
| A2      | <b>←</b> | 0C      | Misfire counts for last/current driving cycles (front rotor)                                  | Misfire     | 24      | Counts       |
| А3      | <b>←</b> | 0B      | Exponentially weighted moving average misfire counts for last 10 driving cycles (rear rotor)  | iviisiile   | 24      | Counts       |
| А3      | <b>←</b> | 0C      | Misfire counts for last/current driving cycles (rear rotor)                                   |             | 24      | Counts       |

<sup>\*1 :</sup> California emission regulation applicable model

#### DTC DETECTION LOGIC AND CONDITIONS [13B-MSP]

id0102g1100300

The detection condition of the following DTC has been changed from 2008MY.

#### **B1342 PCM malfunction**

· Malfunction in the PCM internal circuit.

#### P0030 A/F sensor heater control circuit problem

• The PCM monitors the A/F sensor impedance when under the A/F sensor heater control for **190 s**. If the impedance is more than **44 ohms** while PCM turns A/F sensor heater on, the PCM determines that there is a A/F sensor heater control circuit problem.

#### P0031 A/F sensor heater control circuit low input

• The input voltage to the A/F sensor heater drive terminal in the PCM is at the set value or less for 1 s or more even though the A/F sensor heater is duty-controlled at under 90 % by the PCM.

#### P0032 A/F sensor heater control circuit high input

• The input voltage to the A/F sensor heater drive terminal in the PCM is at the set value or more for 1 s or more even though the A/F sensor heater is duty-controlled at 10 % or more by the PCM.

#### P0037 HO2S heater control circuit low input

• The input voltage to the HO2S heater drive terminal in the PCM is at the set value or less for **0.5** s or more even though the HO2S heater is duty-controlled at **under 90** % by the PCM.

#### P0038 HO2S heater control circuit high input

• The input voltage to the HO2S heater drive terminal in the PCM is at the set value or more for **0.5** s or more even though the HO2S heater is duty-controlled at **10% or more** by the PCM.

#### P0103 MAF sensor circuit high input

• The PCM monitors the input voltage from the MAF sensor when the engine is running. If the input voltage is more than 5.0 V, the PCM determines that the MAF sensor circuit input voltage is high.

#### P0107 BARO sensor circuit low input

• The PCM monitors the input voltage from the BARO sensor when the engine is running. If the input voltage is less than 2.09 V, the PCM determines that the BARO sensor circuit input voltage is low.

#### 01-02

#### P0108 BARO sensor circuit high input

• The PCM monitors the input voltage from the BARO sensor when the engine is running. If the input voltage is **more than 4.02 V**, the PCM determines that the BARO sensor circuit input voltage is high.

#### P0130 A/F sensor circuit problem

• The PCM monitors the A/F sensor impedance when under the A/F sensor heater control. If the impedance is **more than 500 ohms**, the PCM determines that there is a A/F sensor circuit problem.

#### P0131 A/F sensor circuit low input

- Detect any of the following condition:
  - The input voltage to the A/F sensor positive terminal is 1.128 V or less.
  - The input voltage to the A/F sensor negative terminal is 0.044 V or less.
  - The electric potential difference between the A/F sensor positive and negative terminals is **0 V or less**.

#### P0132 A/F sensor circuit high input

- Detect any of the following condition:
  - The input voltage to the A/F sensor positive terminal is 3.589 V or more.
  - The input voltage to the A/F sensor negative terminal is 3.541 V or more.

#### P0133 A/F sensor circuit slow response

The A/F sensor output signal reacts at a slower timing than expected from the fuel feedback amount.

#### MONITORING CONDITIONS

- A/F sensor heater monitor: completed
- Fuel system loop status: closed loop fuel control
- Engine speed: 1,500–4,000 rpm
- LOAD: 21.7–64.7 %

#### P0134 A/F sensor no activity detected

• The PCM monitors the A/F sensor element impedance when the following conditions are met. If the A/F sensor element impedance is **50 ohms or more**, the PCM determines that A/F sensor is not activated.

#### **MONITORING CONDITIONS**

- A/F sensor heater, HO2S heater, A/F sensor, HO2S, and TWC Repair Verification Drive Mode
- Following conditions are met:
  - Time from engine start is above 40 s (ECT when engine start is 20 °C {68 °F}).

#### P0137 HO2S circuit low input

 The PCM monitors input voltage from HO2S. If the input voltage from the HO2S is below 0.1 V for 35.2 s the PCM determines that circuit input is low.

#### MONITORING CONDITIONS

- A/F sensor heater, HO2S heater, A/F sensor, HO2S, and TWC Repair Verification Drive Mode
- Following conditions are met:
  - Engine speed is above 1,500 rpm.
  - Engine coolant temperature is above 70 °C {158 °F}.
  - Fuel injector control in HO2S closed loop control.
- The PCM monitors the input voltage from the HO2S when the following conditions are met. Under the following
  monitoring conditions, if the input voltage from the HO2S does not even exceed 0.1 V though the short term
  fuel trim is controlled, the PCM determines that sensor circuit input is low.

#### MONITORING CONDITIONS

- A/F sensor heater, HO2S heater, A/F sensor, HO2S, and TWC Repair Verification Drive Mode
- Following conditions are met for above 20.8 s:
  - Engine speed is above 1,500 rpm.
  - Engine coolant temperature is above 70 °C {158 °F}.

#### P0138 HO2S circuit high input

The PCM monitors the input voltage from the HO2S when the engine is running. If the input voltage is more
than 1.2 V, the PCM determines that the HO2S circuit voltage is high.

#### P0139 HO2S circuit slow response

 The PCM monitors the HO2S inversion cycle period and rich-to-lean response time while under the open loop fuel control (fuel cut off control). If the average response time is more than the specification, the PCM determines that the HO2S circuit response is slow.

#### P0327 KS No.1 circuit low input

The PCM monitors the input voltage from the KS No.1 when the engine is running. If the input voltage is less
than 1.2 V, the PCM determines that the KS No.1 circuit input voltage is low.

#### P0328 KS No.1 circuit high input

The PCM monitors the input voltage from the KS No.1 when the engine is running. If the input voltage is more
than 4.0 V, the PCM determines that the KS No.1 circuit input voltage is high.

#### P0332 KS No.2 circuit low input

• The PCM monitors the input voltage from the KS No.2 when the engine is running. If the input voltage is **less** than 1.2 V, the PCM determines that the KS No.2 circuit input voltage is low.

#### P0333 KS No.2 circuit high input

• The PCM monitors the input voltage from the KS No.2 when the engine is running. If the input voltage is **more than 4.0 V**, the PCM determines that the KS No.2 circuit input voltage is high.

#### P0420 Catalyst system efficiency below threshold

The PCM monitors the input voltage from the HO2S and the A/F sensor output current when the following
conditions are met. If the input voltage change is extremely large compared to the output current change, the
PCM determines that the catalyst system has deteriorated.

#### MONITORING CONDITIONS

- ECT: more than 70 °C {158 °F}
- Catalyst converter temperature: more than 400 °C {752 °F}
- Engine speed: less than 5,000 rpm
- LOAD: 20–50 % (maximum calculated load value varies depending on engine speed)
- Time with purge control system does not operate: more than 20 s

#### P0441 EVAP system incorrect purge flow

 The PCM monitors the purge line vacuum, when the following conditions are met. If the vacuum between the charcoal canister and the intake manifold does not reach the specification, the PCM determines that the EVAP system purge flow is incorrect.

#### MONITORING CONDITIONS

- Vehicle speed: 70.1–130 km/h {43.5–80.8 mph}
- Engine speed: 1,200-4,000 rpm
- Throttle valve opening angle: 10.2–27.7 % (changes by engine speed)

#### P0442 EVAP system leak detected (small leak)

 The PCM monitors the pump load current (EVAP line pressure) when the specified period has passed after the EVAP system is sealed when the following conditions are met. If the pump load current does not reach the reference current value within the specified period, the PCM determines that the EVAP system has small leak.

#### MONITORING CONDITIONS

- BARO: more than 72 kPa {542 mmHg, 21.33 inHg}
- IAT: 5-40 °C {41-104 °F}
- Fuel tank level: 15–85 %
- Battery voltage: 11.0–20.0 V
- Ignition switch: OFF

#### P0443 Purge solenoid valve circuit problem

- Detect any of the following condition:
  - The control voltage of the purge solenoid valve is less than specification even though the purge solenoid valve is off.
  - The current in the output driver IC over-current detection circuit above 3.5 A even though the purge solenoid valve is ON.

#### P0455 EVAP system leak detected (large leak)

 The PCM monitors the pump load current (EVAP line pressure) when the specified period has passed after EVAP system is sealed when the following conditions are met. If the pump load current does not reach the reference current value within the specified period, the PCM determines that the EVAP system has a large leak.

#### MONITORING CONDITIONS

- BARO: more than 72 kPa {542 mmHg, 21.33 inHg}
- IAT: 5–40 °C {41–104 °F}
- Fuel tank level: 15–85 %
- Battery voltage: 11.0–20.0 V
- Ignition switch: OFF

#### P0456 EVAP system leak detected (very small leak)

The PCM monitors the pump load current (EVAP line pressure) when a specified period has passed after EVAP
system is sealed after the ignition switch is turned off. If the pump load current does not reach the reference
load value or the rate of the load increase is lower than specified within a specified period, the PCM determines
that the EVAP system has a very small leak.

#### MONITORING CONDITIONS

- BARO: more than 72 kPa {542 mmHg, 21.33 inHg}
- IAT: 5-40 °C {41-104 °F}
- Fuel tank level: 15-85 %
- Battery voltage: 11.0–20.0 V
- Ignition switch: OFF

#### P0480 Cooling fan relay No.1 control circuit problem

- The PCM monitors the cooling fan relay No.1 control voltage when the PCM turns the cooling fan relay No.1 off.
   If the control voltage is low, the PCM determines that the cooling fan No.1 control circuit voltage is low.
- The PCM monitors the cooling fan relay No.1 control voltage when the PCM turns the cooling fan relay No.1 on. If the control voltage is high, the PCM determines that the cooling fan No.1 control circuit voltage is high.

#### P0481 Cooling fan relay No.2 and No.3 control circuit problem

- The PCM monitors the cooling fan relay No.2/No.3 control voltage when the PCM turns the cooling fan relay No.2/No.3 off. If the control voltage is low, the PCM determines that the cooling fan No.2/No.3 control circuit voltage is low.
- The PCM monitors the cooling fan relay No.2/No.3 control voltage when the PCM turns the cooling fan relay No.2/No.3 on. If the control voltage is high, the PCM determines that the cooling fan No.2/No.3 control circuit voltage is high.

#### P0482 Cooling fan relay No.4 and No.5 control circuit problem

- The PCM monitors the cooling fan relay No.4/No.5 control voltage when the PCM turns the cooling fan relay No.4/No.5 off. If the control voltage is low, the PCM determines that the cooling fan No.4/No.5 control circuit voltage is low.
- The PCM monitors the cooling fan relay No.4/No.5 control voltage when the PCM turns the cooling fan relay No.4/No.5 on. If the control voltage is high, the PCM determines that the cooling fan No.4/No.5 control circuit voltage is high.

#### P0522 Oil pressure sensor low input

The voltage of oil pressure sensor input terminal is less than 0.2 V for 0.5 s or more.

#### P0523 Oil pressure sensor high input

The voltage of oil pressure sensor input terminal is more than 4.8 V for 0.5 s or more.

#### P0606 PCM processor error

• PCM internal CPU malfunction.

#### P0662 SSV solenoid valve control circuit high

 The current in the output driver IC over-current detection circuit above 1.5 A even though the SSV solenoid valve is ON.

#### P1260 Immobilizer system problem

- The keyless control module detects an immobilizer system malfunction (vehicle with advanced keyless and start system).
- The instrument cluster detects an immobilizer system malfunction (vehicle with keyless entry system).

#### P1680 OCV circuit low input

 The PCM monitors input voltage from the OCV. If the voltage of the OCV input terminal is less than the specification for 1 s when the battery voltage is more than 10 V, the PCM determines the OCV circuit voltage is low.

#### P1681 OCV circuit high input

The PCM monitors input voltage from the OCV. If the OCV current is more than 3.5 A for 2 s when the battery voltage is more than 10 V, the PCM determines the OCV circuit has a malfunction.

#### P1682 Metering oil pump No.1 circuit low input

The PCM monitors the input voltage from the metering oil pump No.1 when the battery voltage is more than 8
 V and the metering oil pump No.1 control signal turned from ON to OFF. If the input voltage is less than the specification, the PCM determines that the metering oil pump No.1 circuit has a malfunction.

#### P1683 Metering oil pump No.1 circuit high input

The PCM monitors the input voltage from the metering oil pump No.1 when the battery voltage is more than 8
 V and the metering oil pump No.1 control signal turned from ON to OFF. If the input voltage is more than the specification, the PCM determines that the metering oil pump No.1 circuit has a malfunction.

#### P1684 Metering oil pump oil pressure sensor-oil pressure is low

It is that the oil pressure at the metering oil pump system is less than 40 kPa {0.41 kgf/cm², 5.8 psi} continues for 10 s, after specified period passes after the engine starts.

#### P1685 Metering oil pump oil pressure sensor-oil pressure is high

• It is that the oil pressure at the metering oil pump system is more than 180 kPa {1.84 kgf/cm², 26.1 psi} continues for 10 s, after specified period passes after the engine starts.

#### P1686 Metering oil pump No.2 circuit low input

The PCM monitors the input voltage from the metering oil pump No.2 when the battery voltage is more than 8
 V and the metering oil pump No.2 control signal turned from ON to OFF. If the input voltage is less than the specification, the PCM determines that the metering oil pump No.2 circuit has a malfunction.

#### P1687 Metering oil pump No.2 circuit high input

The PCM monitors the input voltage from the metering oil pump No.2 when the battery voltage is more than 8
 V and the metering oil pump No.2 control signal turned from OFF to ON. If the input voltage is more than the specification, the PCM determines that the metering oil pump No.2 circuit has a malfunction.

#### P2004 APV stuck open (No.1)

• The PCM monitors the input voltage from the APV position sensor No.1 when the APV is closed. If the input voltage is **more than 1.0 V**, the PCM determines that the APV is stuck open.

#### P2005 APV stuck open (No.2)

• The PCM monitors the input voltage from the APV position sensor No.2 when the APV is closed. If the input voltage is **more than 1.0 V**, the PCM determines that the APV is stuck open.

#### P2009 APV motor control circuit low input

- Detect any of the following condition:
  - The PCM terminal 2D voltage is not within 3.6 to 4.39 V when the APV motor is operating (open).
  - The PCM terminal 2F voltage is not within 3.6 to 4.39 V when the APV motor is operating (closed).
  - The PCM terminal 2D, 2F voltage is 4.39 V or more respectively when the APV motor is not operating.

#### P2010 APV motor control circuit high input

 The PCM monitors the APV motor control current when the engine is running. If the driver IC current is more than 10 A for 5 s, the PCM determines that there is an APV motor control circuit malfunction.

#### P2101 Throttle actuator circuit range/performance

- Detect any of the following condition:
  - The voltage is not supplied to throttle body even though the drive-by-wire power supply is ON.
  - The voltage is supplied to throttle body even though the drive-by-wire power supply is off.

#### P2122 APP sensor No.1 circuit low input

• The PCM monitors the input voltage from the APP sensor No.1 when the engine is running. If the input voltage is **less than 0.3 V**, the PCM determines that the APP sensor No.1 circuit input voltage is low.

#### P2127 APP sensor No.2 circuit low input

• The PCM monitors the input voltage from the APP sensor No.2 when the engine is running. If the input voltage is **less than 0.3 V**, the PCM determines that the APP sensor No.2 circuit input voltage is low.

#### P2138 APP sensor No.1/No.2 voltage correlation problem

• The PCM compares the input voltage from APP sensor No.1 with the input voltage from APP sensor No.2 when the engine is running. If the difference is more than the specification, the PCM determines that there is a APP sensor No.1/No.2 voltage correlation problem.

#### P2195 A/F sensor signal stuck lean

• The PCM monitors the A/F sensor output current when the following conditions are met. If the average output current is **more than 1.15 A** for **25 s**, the PCM determines that the A/F sensor signal remains lean.

### MONITORING CONDITIONS — FCT: more than 70 °C (158 °F

- ECT: more than 70 °C {158 °F}
- Engine speed: 1,000–3,200 rpm
- MAF amount: 6-80 g/s {0.80-10.58 lb/min}
- Target A/F feedback system status: feedback control
- Input voltage from the HO2S: more than 0.7 V

#### P2196 A/F sensor signal stuck rich

• The PCM monitors the A/F sensor output current when the following conditions are met. If the average output current is **less than 0.85 A** for **25 s**, the PCM determines that the A/F sensor signal remains rich.

#### **MONITORING CONDITIONS**

- ECT: more than 70 °C {158 °F}
- Engine speed: 1,000–3,200 rpm
- MAF amount: 6-80 g/s {0.80-10.58 lb/min}
- Target A/F feedback system status: feedback control
- Input voltage from the HO2S: less than 0.2 V

#### P2257 AIR pump relay control circuit low

• The PCM monitors the AIR pump relay control voltage when the AIR pump is not operating. If the control voltage is less than the specification, the PCM determines that the AIR pump relay control circuit voltage is low.

#### P2258 AIR pump relay control circuit high

Detect the 1.5 A or more in the output driver IC over-current detection circuit even though the AIR pump is not
operating.

#### P2259 AIR solenoid valve control circuit low

• The PCM monitors the AIR solenoid valve control voltage when the AIR pump is not operating. If the control voltage is **less than 3.5 V**, the PCM determines that the AIR solenoid valve control circuit voltage is low.

#### P2260 AIR solenoid valve control circuit high

 Detect the 3 A or more in the output driver IC over-current detection circuit even though the AIR pump is operating.

#### P2270 HO2S signal stuck lean

The PCM monitors the input voltage from the HO2S when the following conditions are met. If the input voltage
is less than 0.4 V for 40 s, the PCM determines that the HO2S signal remains lean.

#### MONITORING CONDITIONS

- ECT: more than 70 °C {158 °F}
- Engine speed: more than 1,500 rpm
- MAF amount: more than 10 g/s {1.32 lb/min}
- Short term fuel trim: –20–20 %
- Long term fuel trim: –50–50 %
- Target A/F feedback system status: feedback control

01-02

#### ON-BOARD DIAGNOSTIC [13B-MSP]

#### P2271 HO2S signal stuck rich

- The PCM monitors the input voltage from the HO2S when the following conditions are met. If the input voltage is more than 0.85 V for 40 s, the PCM determines that the HO2S signal remains rich.
   MONITORING CONDITIONS
  - ECT: more than 70 °C {158 °F}
  - Engine speed: more than 1,500 rpm
  - MAF amount: more than 10 g/s {1.32 lb/min}
  - Short term fuel trim: –20–20 %
  - Long term fuel trim: –50–50 %
  - Target A/F feedback system status: feedback control

#### KOEO/KOER SELF-TEST [13B-MSP]

id0102g1100400

#### **KOEO/KOER** self-test table

N/A: Not applicable

| DTC No.             |                             |                                                               |      | N/A: Not applicab  Test condition |  |  |
|---------------------|-----------------------------|---------------------------------------------------------------|------|-----------------------------------|--|--|
|                     |                             | Condition                                                     |      |                                   |  |  |
| 2009MY              | 2008MY  N/A PCM malfunction |                                                               | KOEO | KOER                              |  |  |
| B1342               | N/A                         |                                                               | ×    | _                                 |  |  |
| P0030               | <b>←</b>                    | A/F sensor heater control circuit problem                     |      | _                                 |  |  |
| P0031               | <b>←</b>                    | A/F sensor heater control circuit low input                   | ×    | ×                                 |  |  |
| P0032               | <b>←</b>                    | A/F sensor heater control circuit high input                  | _    | ×                                 |  |  |
| P0037               | <b>←</b>                    | HO2S heater control circuit low input                         | ×    | ×                                 |  |  |
| P0038               | <b>←</b>                    | HO2S heater control circuit high input                        | _    | ×                                 |  |  |
| P0076* <sup>3</sup> | ←                           | VDI solenoid valve control circuit low input                  | ×    | ×                                 |  |  |
| P0077* <sup>3</sup> | <b>←</b>                    | VDI solenoid valve control circuit high input                 | _    | _                                 |  |  |
| P0101               | <b>←</b>                    | MAF sensor circuit range/performance problem                  | _    | _                                 |  |  |
| P0102               | <b>←</b>                    | MAF sensor circuit low input                                  |      | ×                                 |  |  |
| P0103               | <b>←</b>                    | MAF sensor circuit high input                                 | ×    | ×                                 |  |  |
| P0107               | <b>←</b>                    | BARO sensor circuit low input                                 | ×    | ×                                 |  |  |
| P0108               | <b>←</b>                    | BARO sensor circuit high input                                | ×    | ×                                 |  |  |
| P0111               | <b>←</b>                    | IAT sensor circuit range/performance problem                  | _    | _                                 |  |  |
| P0112               | <b>←</b>                    | IAT sensor circuit low input                                  | ×    | ×                                 |  |  |
| P0113               | <b>←</b>                    | IAT sensor circuit high input                                 | ×    | ×                                 |  |  |
| P0116               | <b>←</b>                    | ECT sensor circuit range/performance problem                  | _    | _                                 |  |  |
| P0117               | <b>←</b>                    | ECT sensor circuit low input                                  | ×    | ×                                 |  |  |
| P0118               | <b>←</b>                    | ECT sensor circuit high input                                 | ×    | ×                                 |  |  |
| P0122               | <b>←</b>                    | TP sensor No.1 circuit low input                              | ×    | ×                                 |  |  |
| P0123               | <b>←</b>                    | TP sensor No.1 circuit high input                             | ×    | ×                                 |  |  |
| P0125               | <b>←</b>                    | Insufficient coolant temperature for closed loop fuel control | _    | _                                 |  |  |
| P0126               | <b>←</b>                    | Insufficient coolant temperature for stable operation         | _    | _                                 |  |  |
| P0130               | <b>←</b>                    | A/F sensor circuit problem                                    | _    | ×                                 |  |  |
| P0131               | <b>←</b>                    | A/F sensor circuit low input                                  | _    | ×                                 |  |  |
| P0132               | <b>←</b>                    | A/F sensor circuit high input                                 | _    | ×                                 |  |  |
| P0133               | <b>←</b>                    | A/F sensor circuit slow response                              | _    | _                                 |  |  |
| P0134               | <b>←</b>                    | A/F sensor no activity detected                               | _    | ×                                 |  |  |
| P0137               | <b>←</b>                    | HO2S circuit low input                                        | _    | _                                 |  |  |
| P0138               | <b>←</b>                    | HO2S circuit high input                                       | ×    | ×                                 |  |  |
| P0139               | <b>←</b>                    | HO2S circuit slow response                                    | _    | _                                 |  |  |
| P0171               | <b>←</b>                    | System too lean                                               | _    | ×                                 |  |  |
| P0172               | <b>←</b>                    | System too rich                                               | _    | ×                                 |  |  |
| P0222               | <b>←</b>                    | TP sensor No.2 circuit low input                              | ×    | ×                                 |  |  |
| P0223               | <b>←</b>                    | TP sensor No.2 circuit high input                             | ×    | ×                                 |  |  |
| P0300               | <b>←</b>                    | Random misfire detected                                       | _    | _                                 |  |  |
| P0301               | <b>←</b>                    | Front rotor misfire detected                                  | _    | _                                 |  |  |
| P0302               | <b>←</b>                    | Rear rotor misfire detected                                   | _    | _                                 |  |  |
| P0327               | <b>←</b>                    | KS No.1 circuit low input                                     | ×    | ×                                 |  |  |
| P0328               | <b>←</b>                    | KS No.1 circuit high input                                    | ×    | ×                                 |  |  |

| DTC No.             |                   | Condition                                                                    | Test co      | condition |  |
|---------------------|-------------------|------------------------------------------------------------------------------|--------------|-----------|--|
| 2009MY              | 2008MY            | Condition                                                                    | KOEO         | KOER      |  |
| P0332               | N/A               | KS No.2 circuit low input                                                    | ×            | ×         |  |
| P0333               | N/A               | KS No.2 circuit high input                                                   | ×            | ×         |  |
| P0335               | <b>←</b>          | Eccentric shaft position sensor circuit problem                              | _            | _         |  |
| P0336               | <b>←</b>          | Eccentric shaft position sensor circuit range/performance problem            | _            | ×         |  |
| P0410               | <b>←</b>          | Secondary air injection system problem                                       | _            | ×         |  |
| P0411               | <b>←</b>          | Secondary air injection system incorrect upstream flow                       | _            | _         |  |
| P0420               | <b>←</b>          | Catalyst system efficiency below threshold                                   | _            | _         |  |
| P0441               | <b>←</b>          | EVAP system incorrect purge flow                                             | _            | ×         |  |
| P0442               | <b>←</b>          | EVAP system leak detected (small leak)                                       | _            | ×         |  |
| P0443               | <b>←</b>          | Purge solenoid valve circuit problem                                         | ×            | ×         |  |
| P0446               | <b>←</b>          | EVAP system vent control circuit problem                                     | _            | ×         |  |
| P0455               | <b>←</b>          | EVAP system leak detected (large leak)                                       | _            | _         |  |
| P0456* <sup>1</sup> | <b>←</b>          | EVAP system leak detected (very small leak)                                  | _            | _         |  |
| P0461               | <del></del>       | Fuel gauge sender unit (main) circuit range/performance problem              |              |           |  |
| P0462               | <u>`</u>          | Fuel gauge sender unit (main) circuit low input                              |              | ×         |  |
| P0463               | <u>←</u>          | Fuel gauge sender unit (main) circuit high input                             | _            | ×         |  |
| P0480               | <u>←</u>          | Cooling fan relay No.1 control circuit problem                               | ×            | ×         |  |
| P0481               | <del></del>       | Cooling fan relay No.2 and No.3 control circuit problem                      | ×            | ×         |  |
| P0482               | N/A               | Cooling fan relay No.4 and No.5 control circuit problem                      |              |           |  |
| P0500               |                   | VSS circuit problem                                                          | ×            | ×         |  |
| P0505               | <del></del>       | Idle air control system problem                                              |              |           |  |
| P0506               | <u>←</u>          | Idle air control system RPM lower than expected                              |              | ×         |  |
| P0507               | <del></del>       | Idle air control system RPM higher than expected                             | _            |           |  |
|                     | <u>←</u>          |                                                                              | _            | _         |  |
| P050A<br>P0522      | — <u>←</u><br>N/A | Cold start idle air control system performance Oil pressure sensor low input | <del>-</del> |           |  |
| P0522<br>P0523      |                   | <u> </u>                                                                     | ×            | ×         |  |
| P0523<br>P0562      | N/A               | Oil pressure sensor high input                                               | ×            | ×         |  |
| P0562<br>P0564      | <b>←</b>          | System voltage low (KAM)                                                     | ×            | ×         |  |
|                     | <b>←</b>          | Cruise control switch input circuit problem                                  | ×            | ×         |  |
| P0571               | <u>←</u>          | Brake switch input circuit problem                                           | ×            | ×         |  |
| P0601               | <u>←</u>          | PCM programming error                                                        | ×            | ×         |  |
| P0602<br>P0604      | <b>←</b>          | PCM programming error                                                        | ×            | ×         |  |
|                     | <b>←</b>          | PCM random access memory error                                               | ×            | ×         |  |
| P0606               | N/A               | PCM processor error                                                          | ×            | ×         |  |
| P0610               | <b>←</b>          | PCM vehicle configuration error                                              | ×            | ×         |  |
| P0638               | <b>←</b>          | Throttle actuator control circuit range/performance problem                  | _            | _         |  |
| P0661               | <u>←</u>          | SSV solenoid valve control circuit low                                       | ×            | ×         |  |
| P0662               | <b>←</b>          | SSV solenoid valve control circuit high                                      | _            | _         |  |
| P0703               | <b>←</b>          | Brake switch input circuit problem                                           | _            | _         |  |
| P0704* <sup>2</sup> | <b>←</b>          | CPP switch input circuit problem                                             | _            | _         |  |
| P0850* <sup>2</sup> | <b>←</b>          | Neutral switch input circuit problem                                         | _            | _         |  |
| P1260               | <b>←</b>          | Immobilizer system problem                                                   | ×            | _         |  |
| P1680               | N/A               | OCV circuit low input                                                        | ×            | ×         |  |
| P1681               | N/A               | OCV circuit high input                                                       | ×            | ×         |  |
| P1682               | N/A               | Metering oil pump No.1 circuit low input                                     | _            | ×         |  |
| P1683               | N/A               | Metering oil pump No.1 circuit high input                                    | _            | ×         |  |
| P1684               | N/A               | Metering oil pump oil pressure sensor –oil pressure is low                   | _            | _         |  |
| P1685               | N/A               | Metering oil pump oil pressure sensor –oil pressure is high                  | _            | _         |  |
| P1686               | <b>←</b>          | Metering oil pump No.2 circuit low input                                     | _            | ×         |  |
| P1687               | <del></del>       | Metering oil pump No.2 circuit high input                                    | _            | ×         |  |
| N/A                 | P1688             | Metering oil pump control circuit initial check problem                      | _            | ×         |  |
| P2004               | <u> </u>          | APV stuck open (No.1)                                                        | ×            | ×         |  |
| P2005               | N/A               | APV stuck open (No.2)                                                        | ×            | ×         |  |

| DTC No. |          | 0                                                                          | Test condition |      |  |
|---------|----------|----------------------------------------------------------------------------|----------------|------|--|
| 2009MY  | 2008MY   | - Condition                                                                | KOEO           | KOER |  |
| N/A     | P2006    | APV motor control circuit IC problem                                       | _              | _    |  |
| P2009   | <b>←</b> | APV motor control circuit low input                                        | ×              | ×    |  |
| P2010   | <b>←</b> | APV motor control circuit high input                                       | ×              | ×    |  |
| N/A     | P2016    | APV position sensor circuit low input                                      | ×              | ×    |  |
| N/A     | P2017    | APV position sensor circuit problem                                        | ×              | ×    |  |
| P2067   | <b>←</b> | Fuel gauge sender unit (sub) circuit low input                             | _              | ×    |  |
| P2068   | <b>←</b> | Fuel gauge sender unit (sub) circuit high input                            | _              | ×    |  |
| P2070   | <b>←</b> | SSV stuck open                                                             | ×              | ×    |  |
| P2096   | <b>←</b> | Target A/F feedback system too lean                                        | _              | _    |  |
| P2097   | <b>←</b> | Target A/F feedback system too rich                                        | _              | _    |  |
| P2101   | N/A      | Throttle actuator circuit range/performance                                | _              | _    |  |
| N/A     | P2102    | Throttle actuator power supply line circuit low input                      | ×              | ×    |  |
| N/A     | P2103    | Throttle actuator power supply line circuit high input                     | ×              | ×    |  |
| N/A     | P2106    | Throttle actuator control system–forced limited power                      | _              | _    |  |
| P2107   | <b>←</b> | Throttle actuator control module processor error                           | ×              | ×    |  |
| P2108   | <b>←</b> | Throttle actuator control module performance error                         | ×              | ×    |  |
| P2109   | <b>←</b> | TP sensor minimum stop range/performance problem                           | ×              | ×    |  |
| P2112   | <b>←</b> | Throttle actuator control system range/performance problem                 | ×              | ×    |  |
| P2119   | <b>←</b> | Throttle actuator control throttle body range/performance problem          | ×              | ×    |  |
| P2122   | <b>←</b> | APP sensor No.1 circuit low input                                          | ×              | ×    |  |
| P2123   | <b>←</b> | APP sensor No.1 circuit high input                                         | ×              | ×    |  |
| P2127   | <b>←</b> | APP sensor No.2 circuit low input                                          | ×              | ×    |  |
| P2128   | <b>←</b> | APP sensor No.2 circuit high input                                         | ×              | ×    |  |
| P2135   | <b>←</b> | TP sensor No.1/No.2 voltage correlation problem                            | ×              | ×    |  |
| N/A     | P2136    | TP sensor No.1/No.3 voltage correlation problem                            | ×              | ×    |  |
| P2138   | <b>←</b> | APP sensor No.1/No.2 voltage correlation problem                           | ×              | ×    |  |
| P2195   | <b>←</b> | A/F sensor signal stuck lean                                               | _              | _    |  |
| P2196   | <b>←</b> | A/F sensor signal stuck rich                                               | _              | _    |  |
| P2257   | <b>←</b> | AIR pump relay control circuit low                                         | ×              | ×    |  |
| P2258   | <b>←</b> | AIR pump relay control circuit high                                        | _              | ×    |  |
| P2259   | <b>←</b> | AIR solenoid valve control circuit low                                     | ×              | ×    |  |
| P2260   | <b>←</b> | AIR solenoid valve control circuit high                                    | _              | ×    |  |
| P2270   | <b>←</b> | HO2S signal stuck lean                                                     | _              | _    |  |
| P2271   | <b>←</b> | HO2S signal stuck rich                                                     | _              | _    |  |
| P2401   | <b>←</b> | EVAP system leak detection pump control circuit low                        | _              | ×    |  |
| P2402   | <b>←</b> | EVAP system leak detection pump control circuit high                       | _              | ×    |  |
| P2404   | <b>←</b> | EVAP system leak detection pump sense circuit range/performance problem    | _              | ×    |  |
| P2405   | <b>←</b> | EVAP system leak detection pump sense circuit low                          | _              | ×    |  |
| P2407   | <b>←</b> | EVAP system leak detection pump sense circuit intermittent/erratic problem | _              | ×    |  |
| P2502   | <b>←</b> | Charging system voltage problem                                            | _              | ×    |  |
| P2503   | <b>←</b> | Charging system voltage low                                                | _              | ×    |  |
| P2504   | <b>←</b> | Charging system voltage high                                               | _              | ×    |  |

<sup>\*1 :</sup> California emission regulation applicable model \*2 : MT \*3 : 13B-MSP (high power)

#### PID/DATA MONITOR AND RECORD [13B-MSP]

id0102g1100500

• The PID/DATA monitor items are shown below.

#### PID/DATA monitor item table

N/A: Not applicable

| Item              |          | Definition.                                                     |                | N/A: Not applicable |
|-------------------|----------|-----------------------------------------------------------------|----------------|---------------------|
| 2009MY            | 2008MY   | Definition                                                      | Unit/Condition | PCM terminal        |
| ACCS              | <b>←</b> | A/C relay control signal in PCM                                 | On/Off         | 11                  |
| AC_REQ            | N/A      | A/C request signal                                              | On/Off         | 1AU                 |
| N/A               | ACSW     | Input signal from A/C switch                                    | On/Off         | 4W                  |
| AIP RLY           | <b>←</b> | AIR pump relay control signal in PCM                            | On/Off         | 1G                  |
| ALTF              | <b>←</b> | Generator field coil control signal in PCM                      | %              | 2AI                 |
| ALTT V            | <b>←</b> | Input voltage from generator                                    | V              | 2AJ                 |
| APP               | <b>←</b> | APP                                                             | %              | 1AO, 1AP            |
| APP1              | ,        | APP from APP sensor No.1                                        | %              | 140                 |
| APPI              | <b>←</b> | Input voltage from APP sensor No.1                              | V              | 1AO                 |
| ADDO              |          | APP from APP sensor No.2                                        | %              | 140                 |
| APP2              | <b>←</b> | Input voltage from APP sensor No.2                              | V              | 1AP                 |
| APV               | <b>←</b> | APV motor control signal in PCM                                 | Open/Closed    | 2D, 2F              |
| APV_2             | N/A      | APV motor 2 control signal in PCM                               | Open/Closed    |                     |
| APV_POS           | <b>←</b> | Input voltage from APV position sensor No.1                     | V              | 2AN                 |
| APV_POS_2         | N/A      | Input voltage from APV position sensor No.2                     | V              | 2AF                 |
| ARPMDES           | <b>←</b> | Target engine speed                                             | RPM            | _                   |
| N/A               | B+       | Input voltage from battery                                      | V              | 51                  |
| DADO              |          | BARO                                                            | kPa Bar psi    |                     |
| BARO              | <b>←</b> | Input voltage from BARO sensor                                  | V              | _                   |
| ВОО               | <b>←</b> | Input signal from brake switch No.2                             | On/Off         | _                   |
| CATT11_DSD        | <b>←</b> | Estimated catalyst converter temperature                        | °C °F          | _                   |
| CHRGLP            | <b>←</b> | Generator warning light control signal in PCM                   | On/Off         | _                   |
| COLP              | <b>←</b> | Input signal from refrigerant pressure switch (medium-pressure) | On/Off         | 1J                  |
| CPP*2             | <b>←</b> | Input signal from CPP switch                                    | On/Off         | 1D                  |
| CPP/PNP*2         | <b>←</b> | Input signal from neutral switch                                | Drive/Neutral  | 2AS                 |
| DEI* <sup>3</sup> | <b>←</b> | VDI solenoid valve control signal in PCM                        | On/Off         | 2L                  |
| DTCCNT            | <b>←</b> | DTC count (includes those needing no action)                    | _              | _                   |
|                   |          | ECT                                                             | °C °F          |                     |
| ECT               | <b>←</b> | Input voltage from ECT sensor                                   | V              | 2AH                 |
| EQ_RAT11          | <b>←</b> | Lambda                                                          | _              | _                   |
| EQ_RAT11_DS<br>D  | N/A      | Desired equivalence ratio (lambda)                              | -              | -                   |
| ETC_ACT           | <b>←</b> | Throttle valve opening angle                                    | 0              | 2A, 2B              |
|                   |          | Target throttle valve position                                  | %              |                     |
| ETC_DSD           | <b>←</b> | Target throttle valve opening angle                             | 0              | _                   |
| EVAPCP            | <b>←</b> | Purge solenoid valve control signal in PCM                      | %              | 2C                  |
| FAN1              | <b>←</b> | Cooling fan relay No.1/No.2 control signal in PCM               | On/Off         | 1M                  |
| FAN2              | <b>←</b> | Cooling fan relay No.3/No.4 control signal in PCM               | On/Off         | 1N                  |
| FAN3              | N/A      | Cooling fan relay No.4/No.5 control signal in PCM               | On/Off         | 1R                  |
| N/A               | FDPDTC   | Pending code that caused Freeze Frame Data storage              | -              | _                   |
| FLI               | <b>←</b> | Fuel tank level                                                 | %              | _                   |
| FP                | <b>←</b> | Fuel pump relay control signal in PCM                           | On/Off         | 1H                  |
| FPRR              | <b>←</b> | Fuel pump speed control relay control signal in PCM             | On/Off         | 1K                  |

# 2009 Mazda RX-8 Service Highlights (3452–1U–08C) ON-BOARD DIAGNOSTIC [13B-MSP]

| 2009MY 2008MY |                    |              | - Definition                                                 | Unit/Condition                       | PCM terminal          |
|---------------|--------------------|--------------|--------------------------------------------------------------|--------------------------------------|-----------------------|
| r             | FUELPW             | <b>←</b>     | Fuel injection duration in PCM                               | ms                                   | 2AZ, 2BB, 2BC,<br>2BD |
| ľ             | FUELSYS            | <b>←</b>     | Fuel system loop status                                      | OL/CL/OL-Drive/<br>OL-Fault/CL-Fault | -                     |
| t             | GENVDSD            | <b>←</b>     | Target generator voltage                                     | V                                    | _                     |
| Γ             | HTR11              | <b>←</b>     | A/F sensor heater control signal in PCM                      | On/Off                               | 2BG                   |
| r             | HTR12              | <b>←</b>     | HO2S heater control signal in PCM                            | On/Off                               | 2BE                   |
| T             | IAC                | <b>←</b>     | Throttle actuator control signal in PCM                      | %                                    | 2A,2B                 |
| 7             | IASV <sup>*4</sup> | <b>←</b>     | VFAD solenoid valve control signal in PCM                    | On/Off                               | 1AE                   |
| ۱             | IAT                | <b>←</b>     | IAT                                                          | °C °F                                | 1AT                   |
| F             | INIOEAD            |              | Input voltage from IAT sensor                                | =                                    |                       |
| F             | INGEAR             | <b>←</b>     | In gear                                                      | On/Off                               |                       |
| F             | IVS                | <b>←</b>     | Idle validation                                              | Idle/Off Idle                        | -                     |
| L             | KNOCKR             | <b>←</b>     | Spark retard value to prevent knocking                       | 0                                    | 2U, 2V, 2Y, 2AC       |
|               | LDP_EVAPCP         | N/A          | Evap control system incorrect purge flow detection valve     | Α                                    | 1U, 1V                |
|               | LDP_IDL            | N/A          | Evap system detection pump idle current                      | Α                                    | 1U, 1V                |
|               | LDP_MON            | N/A          | Evap system detection pump monitoring current                | Α                                    | 1U, 1V                |
| r             | LDP_REF            | N/A          | Evap system detection pump reference current                 | Α                                    | 1U, 1V                |
| r             | LDP_SLDV           | N/A          | Evap control system small leak detection valve               | Α                                    | 1U, 1V                |
| ľ             | LDP_VSLDV*1        | N/A          | Evap control system very small leak detection valve          | mA/s                                 | 1U, 1V                |
| r             | LOAD               | <b>←</b>     | LOAD                                                         | %                                    | _                     |
| t             | LONGFT1            | <b>←</b>     | Long term fuel trim                                          | %                                    | _                     |
| t             |                    |              | MAF                                                          | g/sec                                |                       |
|               | MAF                | $\leftarrow$ | Input voltage from MAF sensor                                | V                                    | 1AK                   |
| F             | MIL                | <b>←</b>     | MIL control signal in PCM                                    | On/Off                               | _                     |
| t             | MIL_DIS            | <b>←</b>     | Distance travelled while MIL is activated                    | km mile                              | _                     |
|               | MOP_DRV_C          | N/A          | Electromagnetic metering oil pump center driving signal      | On/Off                               | 1E                    |
|               | MOP_DRV_S          | N/A          | Electromagnetic metering oil pump side driving signal        | On/Off                               | 1F                    |
| l             | MOP_FL_C           | N/A          | Electromagnetic metering oil pump center request flow volume | cc/h                                 | 18                    |
| l             | MOP_FL_S           | N/A          | Electromagnetic metering oil pump side request flow volume   | cc/h                                 | 1AA                   |
| ľ             | MOP_P_ACT          | N/A          | Electromagnetic metering oil pump system pressure actual     | Pa                                   | 2R                    |
|               | MOP_P_DSD          | N/A          | Electromagnetic metering oil pump system pressure desired    | Pa                                   | -                     |
| r             | N/A                | MOP_POS      | Metering oil pump control status                             | _                                    | 2V, 2W, 2Y, 2AB       |
| T             | N/A                | MOP_SW       | Input signal from metering oil pump switch                   | On/Off                               | 2N                    |
| $\mid$        | OCV_ACT            | N/A          | OCV current actual                                           | Α                                    | 2E                    |
| r             | OCV_CLEAN          | N/A          | OCV cleaning mode                                            | On/Off                               | _                     |
| T             | OCV_DSD            | N/A          | OCV current desired                                          | Α                                    | _                     |
| r             | O2S11              | <b>←</b>     | A/F sensor output current                                    | Α                                    | 2AD                   |
| T             | O2S12              | <b>←</b>     | Input voltage from HO2S                                      | V                                    | 2Q                    |
| r             | PACNTV             | <b>←</b>     | AIR solenoid valve control signal in PCM                     | On/Off                               | 2G                    |
|               | PCM_T              | <b>←</b>     | Input voltage from PCM temperature sensor                    | V                                    | _                     |
| r             | N/A                | PREDELI      | Delivery mode                                                | On/Off                               | _                     |
| r             | RO2FT1             | <b>←</b>     | Target A/F feedback system status                            | _                                    | _                     |
| r             | RPM                | <b>←</b>     | Engine speed                                                 | RPM                                  | 2AG                   |
| r             | SC_SET             | <b>←</b>     | Cruise indicator light control signal in PCM                 | On/Off                               | _                     |
| $\vdash$      | SCCS               | <b>←</b>     | Input voltage from cruise control switch                     | V                                    | 1AQ                   |

#### 2009 Mazda RX-8 Service Highlights (3452-1U-08C) ON-BOARD DIAGNOSTIC [13B-MSP]

| Ite      | em         | Definition                                               | Linit/Co | ndition | PCM terminal   |
|----------|------------|----------------------------------------------------------|----------|---------|----------------|
| 2009MY   | 2008MY     | Definition                                               | Unit/Co  | mailion | PCIVI terminai |
| N/A      | SELTESTDTC | DTC count by KOEO/KOER self-test                         | -        | -       | -              |
| SHRTFT1  | ←          | Short term fuel trim                                     | 9        | 6       | _              |
| SHRTFT12 | <b>←</b>   | Target A/F fuel trim                                     | 9        | 6       | -              |
| SPARK-L  | ←          | Spark advance (L/F) in PCM                               |          | )       | _              |
| SPARK-T  | <b>←</b>   | Spark advance (T/F) in PCM                               |          | )       | _              |
| SSV      | ←          | SSV solenoid valve control signal in PCM                 | On       | /Off    | 21             |
| Test     | ←          | Test mode                                                | On       | /Off    | _              |
| TH_M     | N/A        | Thermostat monitor engine coolant temperature            | °C       | °F      | -              |
| TH_M_MIN | N/A        | Thermostat monitor engine coolant temperature min limit  | °C °F    |         | -              |
| TH_M_MAX | N/A        | Thermostat monitor engine coolant temperature max limit  | °C       | °F      | -              |
| TIRESIZE | <b>←</b>   | Tire revolution per mile                                 | -        | _       | _              |
| TP       | <b>←</b>   | Input voltage from TP sensor                             | \        | /       | -              |
| TP REL   | <b>←</b>   | Relative TP                                              | 9        | 6       | 2AK, 2AL       |
| TP1      | ,          | TP from TP sensor No.1                                   | 9        | 6       | 2AK            |
| IFI      | <b>←</b>   | Input voltage from TP sensor No.1                        | \        | /       | ZAN            |
| TP2      |            | TP from TP sensor No.2                                   | 9        | 6       | 2AL            |
| IP2      | <b>←</b>   | Input voltage from TP sensor No.2                        | \        | /       | 2AL            |
| TPCT     | <b>←</b>   | Minimum input voltage from TP sensor at throttle closing | V        |         | -              |
| VPWR     | N/A        | Module supply voltage                                    | \        | /       | 1BA            |
| VSS      | <b>←</b>   | Vehicle speed                                            | KPH MPH  |         | -              |

\*1 : California emission regulation applicable model

\*2 : MT

\*3 : 13B-MSP (high power)

\*4 : With VFAD

#### **SIMULATION TEST [13B-MSP]**

id0102g1100600

• The simulation items are shown below.

#### Caution

• To prevent engine damage, use MOP\_FL\_C and MOP\_FL\_S only during idling (after engine warmup) up to 30 s.

#### Simulation item table

N/A: Not applicable

| Iter    | n        | Applicable common and               | Unit/           | Test co | ndition | РСМ      |
|---------|----------|-------------------------------------|-----------------|---------|---------|----------|
| 2009MY  | 2008MY   | Applicable component                | Condition       | KOEO    | KOER    | terminal |
| ACCS    | <b>←</b> | A/C relay                           | On/Off          | ×       | ×       | 11       |
| AIP RLY | <b>←</b> | AIR pump relay                      | On/Off          | ×       | ×       | 1G       |
| ALTF    | <b>←</b> | Generator (field coil)              | On/Off          | -       | ×       | 2AI      |
| APV     | <b>←</b> | APV motor                           | Open/<br>Closed | ×       | ×       | 2D, 2F   |
| ARPMDES | <b>←</b> | Target engine speed                 | RPM             | ×       | ×       | _        |
| DEI*1   | <b>←</b> | VDI solenoid valve                  | On/Off          | ×       | ×       | 2L       |
| ETC_DSD | <b>←</b> | Target throttle valve opening angle | 0               | ×       | ×       | _        |
| EVAPCP  | <b>←</b> | Purge solenoid valve                | %               | ×       | ×       | 2C       |
| FAN1    | <b>←</b> | Cooling fan relay No.1              | On/Off          | ×       | ×       | 1M       |
| FAN2    | <b>←</b> | Cooling fan relay No.2/No.3         | On/Off          | ×       | ×       | 1N       |
| FAN3    | N/A      | Cooling fan relay No.4/No.5         | On/Off          | ×       | ×       | 1R       |
| FP      | <b>←</b> | Fuel pump relay                     | On/Off          | ×       | ×       | 1H       |
| FPRR    | ←        | Fuel pump speed control relay       | On/Off          | ×       | ×       | 1K       |
| FUELPW1 | <b>←</b> | Fuel injector (FP, RP)              | %               | _       | ×       | 2BB, 2BD |

# 2009 Mazda RX-8 Service Highlights (3452–1U–08C) ON-BOARD DIAGNOSTIC [13B-MSP]

| Iter      | n        | Applicable component                                         | Unit/     | Test condition |      | PCM                |
|-----------|----------|--------------------------------------------------------------|-----------|----------------|------|--------------------|
| 2009MY    | 2008MY   | - Applicable component                                       | Condition | KOEO           | KOER | terminal           |
| GENVDSD   | <b>←</b> | Target generator voltage                                     | V         | _              | ×    | _                  |
| HTR12     | <b>←</b> | HO2S heater                                                  | On/Off    | ×              | ×    | 2BE                |
| IASV*2    | <b>←</b> | VFAD solenoid valve                                          | On/Off    | ×              | ×    | 1AE                |
| MOP_FL_C  | N/A      | Electromagnetic metering oil pump center request flow volume | cc/h      | ×              | ×    | 18                 |
| MOP_FL_S  | N/A      | Electromagnetic metering oil pump side request flow volume   | cc/h      | ×              | ×    | 1AA                |
| N/A       | MOP_POS  | Metering oil pump                                            | _         | ×              | ×    | 2V, 2W, 2Y,<br>2AB |
| OCV_CLOSE | N/A      | OCV close mode                                               | On        | ×              | ×    | 2E                 |
| PACNTV    | <b>←</b> | AIR solenoid valve                                           | On/Off    | ×              | ×    | 2G                 |
| N/A       | PREDELI  | Delivery mode                                                | On/Off    | ×              | ×    | _                  |
| SSV       | <b>←</b> | SSV solenoid valve                                           | On/Off    | ×              | ×    | 21                 |
| test      | <b>←</b> | Test mode                                                    | On/Off    | ×              | ×    | _                  |

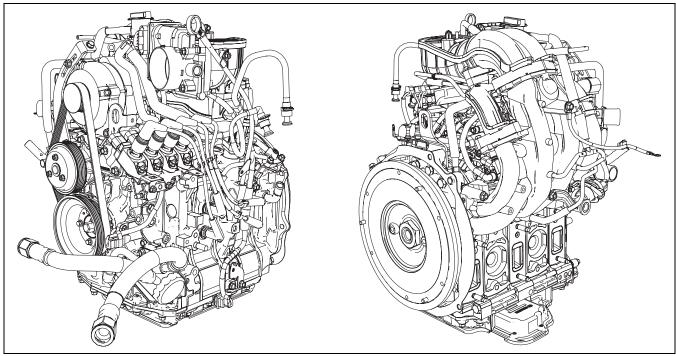
01-02

\*1 : 13B-MSP (high power)
\*2 : With VFAD

# 01-10 MECHANICAL [13B-MSP]

| MECHANICAL OUTLINE | ENGINE STRUCTURAL VIEW |         |
|--------------------|------------------------|---------|
| [13B-MSP]01-10-1   | [13B-MSP]              | 01-10–1 |
|                    | ENGINE FRONT COVER     |         |
|                    | CONSTRUCTION [13R-MSP] | 01-10-2 |

01-10

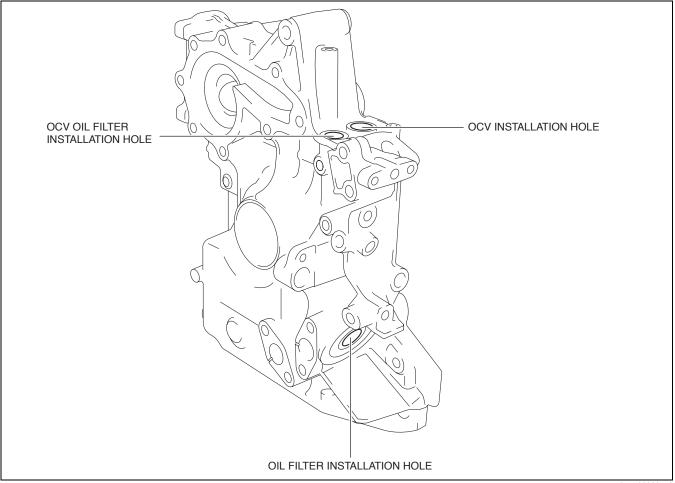

### **MECHANICAL OUTLINE [13B-MSP]**

id011070100100

- The standard power stationary gear has been changed to a high power specification.
- An auxiliary port has been added to the standard power version. The construction is the same as that of the high power vehicle.
- The construction of the front cover has been changed and the oil control valve (OCV) and oil filter are now assembled to it.

## **ENGINE STRUCTURAL VIEW [13B-MSP]**

id011070119200




# **MECHANICAL [13B-MSP]**

## **ENGINE FRONT COVER CONSTRUCTION [13B-MSP]**

id011070119100

- An aluminum engine front cover has been adopted for weight reduction.
  There are installation holes for the oil control valve (OCV), OCV oil filter, and oil filter on the engine front cover.
  The oil filter is assembled to the engine front cover for improved serviceability.

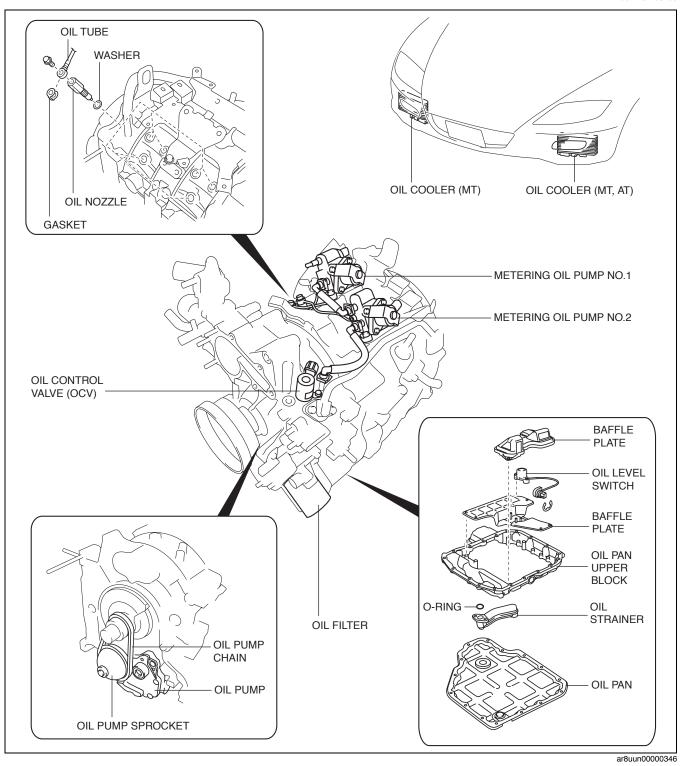


# 01-11 LUBRICATION [13B-MSP]

| LUBRICATION SYSTEM OUTLINE         [13B-MSP]              | OIL PUMP CONSTRUCTION [13B-MSP]01-11-4 METERING OIL PUMP CONSTRUCTION/OPERATION |
|-----------------------------------------------------------|---------------------------------------------------------------------------------|
| STRUCTURAL VIEW [13B-MSP] 01-11-2 LUBRICATION SYSTEM FLOW | [13B-MSP]                                                                       |
| DIAGRAM [13B-MSP] 01-11-3 OIL FILTER CONSTRUCTION         | Operation01-11–8 OIL CONTROL VALVE (OCV)                                        |
| [13B-MSP]01-11-3 OIL PAN CONSTRUCTION                     | CONSTRUCTION/OPERATION [13B-MSP]01-11-9                                         |
| [13B-MSP]01-11-4                                          | Construction                                                                    |

01-11

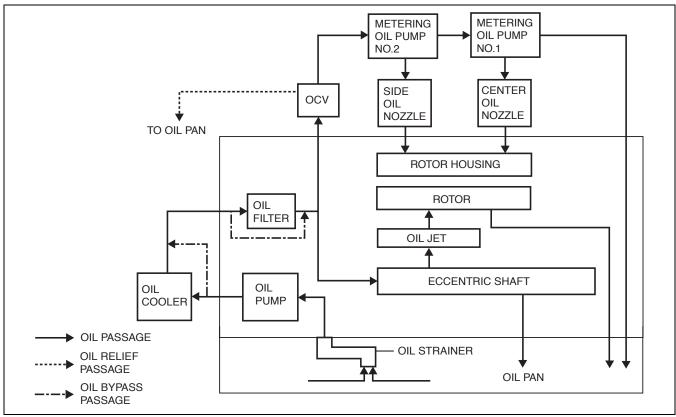
# **LUBRICATION SYSTEM OUTLINE [13B-MSP]**


id0111e4100100

## **Features**

| Improved lubricity      | <ul> <li>An electric type metering oil pump system adopted</li> <li>Center oil nozzles adopted which discharge oil to the center area of the rotor housings</li> <li>Oil pump changed</li> <li>Oil pan upper block adopted</li> </ul> |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Improved serviceability | Oil filter position changed                                                                                                                                                                                                           |

# **LUBRICATION SYSTEM STRUCTURAL VIEW [13B-MSP]**

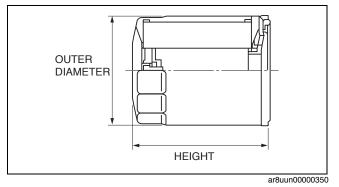

id0111e4100200



01-11

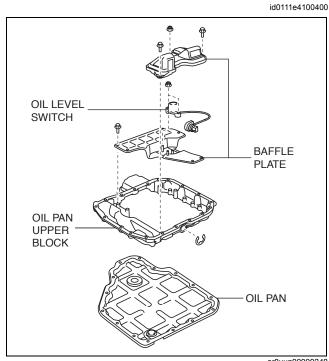
#### id0111e4100300

### **LUBRICATION SYSTEM FLOW DIAGRAM [13B-MSP]**




ar8uun00000347

### **OIL FILTER CONSTRUCTION [13B-MSP]**

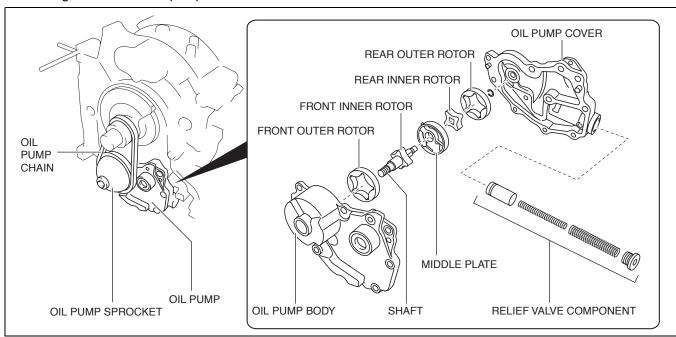

id0111e4100800

- The oil filter is positioned at the lower area of the front cover left surface (Lower left side of the vehicle).
- The oil filter is a full-flow paper element type with an outer diameter of 68 mm {2.68 in} and height of 85 mm {3.35 in}.



#### **OIL PAN CONSTRUCTION [13B-MSP]**

- The oil pan consists of a thinner, steel type oil pan and an aluminum oil pan upper block. With the shape of the oil pan upper block projecting towards the vehicle right side, oil capacity has been increased, stabilizing the oil pressure during cornering even at lower oil levels.
- The oil baffle plates have been adopted inside the oil pan upper block to stabilize engine oil slosh or aeration when the vehicle rolls and to prevent air suction in the oil strainer.
- An oil level switch, equipped inside the oil pan upper block, operates a warning if the oil level is lowered to a certain level. (The warning buzzer sounds and the warning light in the instrument cluster flashes. Afterwards, the warning buzzer stops and the warning light switches from flashing to continuous illumination.)
- A silicon sealant with excellent sealing qualities has been adopted.




ar8uun00000348

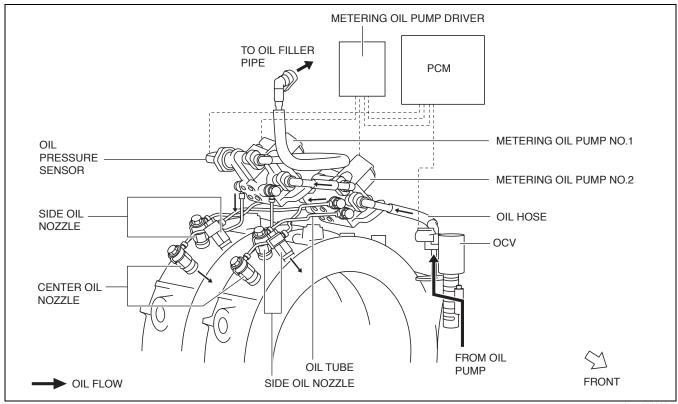
#### **OIL PUMP CONSTRUCTION [13B-MSP]**

id0111e4100600

- The oil pump is installed inside the front cover. The eccentric shaft drives the inner rotors through the oil pump chain and oil pump sprocket.
- A trochoid type oil pump has been adopted.
- The oil pump consists of oil pump body, shaft, front outer rotor, front inner rotor, middle plate, rear inner rotor, rear outer rotor, and oil pump cover.
- A two-rotor type oil pump has been adopted to realize both discharging performance and downsizing. This also contributes to reducing the discharging pulsation which is unique to trochoid pumps.
- An aluminum alloy oil pump body and cover have been adopted to reduce weight.
- The relief valve, which returns engine oil to the intake side when the oil pressure is the specified value or more, is integrated with the oil pump cover.



#### Oil pump specification


| Item                                            | Engine speed [rpm] | Specification (kPa {kgf/cm <sup>2</sup> , psi}) |
|-------------------------------------------------|--------------------|-------------------------------------------------|
| Oil discharge pressure (reference value)        | 1,500              | 280 {2.86, 40.6}                                |
| [Oil temperature: 100°C {212°F}]                | 3,000              | 500 {5.10, 72.5}                                |
| Relief valve opening pressure (reference value) |                    | 1,080 {11.01, 156.6}                            |

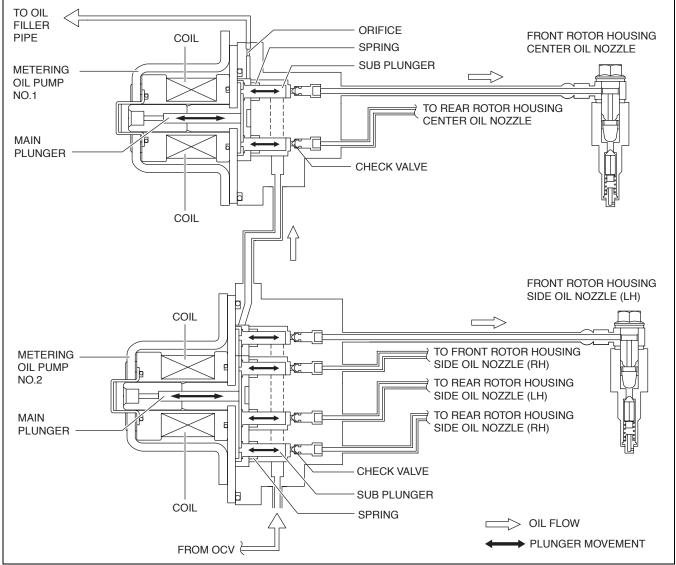
#### METERING OIL PUMP CONSTRUCTION/OPERATION [13B-MSP]

id0111e4661100

#### Construction

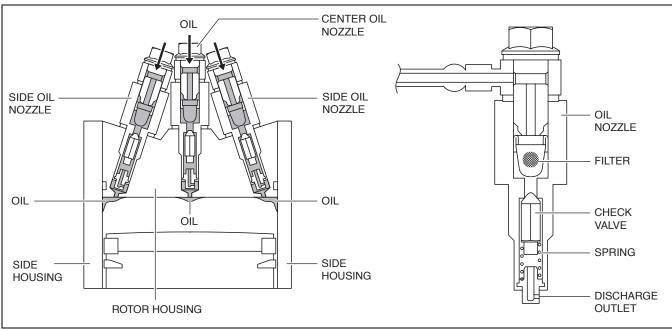
- An electric metering oil pump system has been adopted to optimally control the oil injection amount for effective oil supply and lower oil consumption.
- The electric metering oil pump consists of the metering oil pumps No.1 and No.2, center oil nozzles, side oil nozzles, oil control valve (OCV), oil pressure sensor, metering oil pump driver, PCM, oil hoses, and oil tubes.




ar8uun00000351

#### Component parts and function

| Part name                | Function                                                                                                                                                                                                                                              |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metering oil pump No.1   | Supplies oil to the center oil nozzles                                                                                                                                                                                                                |
| Metering oil pump No.2   | Supplies oil to the side oil nozzles                                                                                                                                                                                                                  |
| Center oil nozzle        | Discharges oil to the center area of the rotor housing                                                                                                                                                                                                |
| Side oil nozzle          | Discharges oil to the side surface of the side housing                                                                                                                                                                                                |
| ocv                      | Based on the signals from the PCM, adjusts the amount of oil supplied to the metering oil pump so that the oil pressure in the metering oil pump is kept constant. (See 01-11-9 OIL CONTROL VALVE (OCV) CONSTRUCTION/OPERATION [13B-MSP].)            |
| Oil pressure sensor      | Detects oil pressure in the metering oil pump and inputs to the PCM (See 01-40-29 OIL PRESSURE SENSOR CONSTRUCTION/OPERATION [13B-MSP].)                                                                                                              |
| Metering oil pump driver | Supplies battery voltage to the metering oil pump based on the signals from the PCM (See 01-40-29 METERING OIL PUMP DRIVER CONSTRUCTION/OPERATION [13B-MSP].)                                                                                         |
| PCM                      | Controls the metering oil pump driver and OCV to realize the optimum oil discharge amount according to engine operation conditions (See 01-40-20 METERING OIL PUMP CONTROL OUTLINE [13B-MSP].) (See 01-40-21 OIL PRESSURE CONTROL OUTLINE [13B-MSP].) |

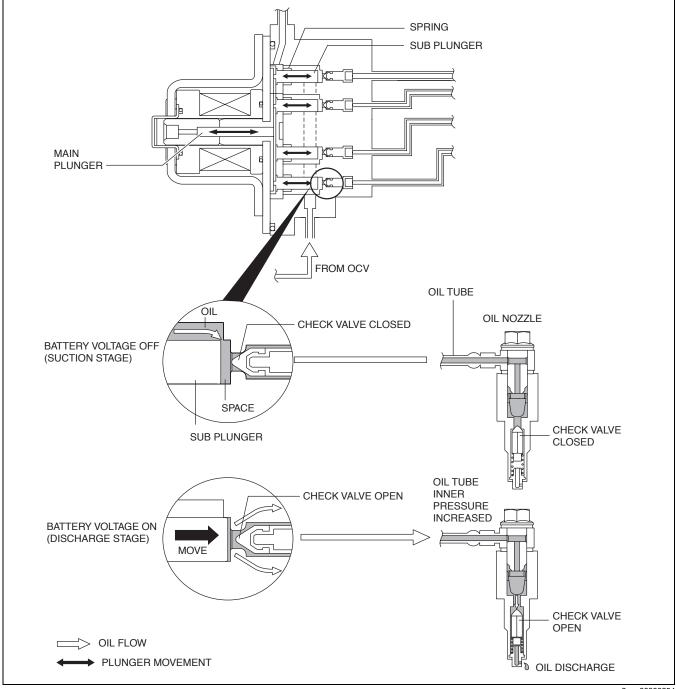

#### Metering oil pump

- The metering oil pump consists of the main and sub plungers, coil spring, check valve, and orifice.
- The metering oil pump No.1 supplies oil to the center oil nozzles, and the metering oil pump No.2 to the side oil nozzles.



#### Oil nozzle

- A total of three oil nozzles, one center oil nozzle and two side oil nozzles, are equipped per one rotor. The center oil nozzle discharges oil to the center area of the rotor housing, and the side oil nozzles to the side surface of the side housing. As a result, oil can be supplied to the entire rotor, enhancing the engine reliability.
- The oil nozzle consists of a check valve which opens and closes the oil passage inside the nozzle, spring, and built-in filter.



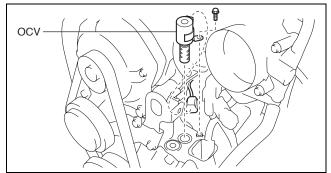

ar8uun00000353

01-11

#### Operation

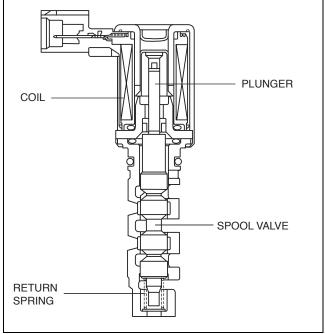
- The PCM sends drive signals to the metering oil pump driver according to the engine operation conditions. The
  metering oil pump driver receives the drive signals from the PCM, and switches the inner ground to supply
  battery voltage to the metering oil pumps No.1 and No.2.
- When the battery voltage is supplied by the metering oil pump driver, the main and sub plungers in the
  metering oil pump move. The plungers return to the original position by spring force when the battery voltage is
  not supplied.
- When the battery voltage is not supplied, oil is suctioned to the space which is made by the plunger pulled by spring force. At this point (suction stage), oil is not supplied to the oil nozzle because the check valve is closed. When the battery voltage is supplied, the plunger moves (pops out) and pushes out the suctioned oil to the oil nozzle side. Because the oil is pushed into the oil tube, the oil pressure in the oil tube increases, then the check valve in the oil nozzle is open and the oil is discharged to the housing. (discharge stage) In this way, the plunger moves within a certain distance and oil is suctioned and discharged repeatedly.




ar8uun0000035

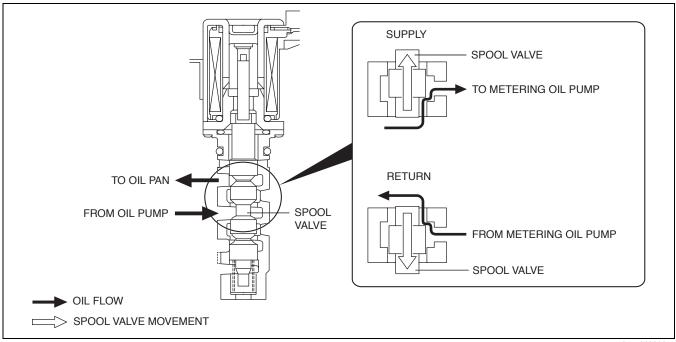
 For ON/OFF control of the battery voltage, refer to CONTROL SYSTEM, METERING OIL PUMP CONTROL. (See 01-40-20 METERING OIL PUMP CONTROL OUTLINE [13B-MSP].)

01-11


#### Construction

• The OCV is installed to the front cover (below the ignition coil bracket).




ar8uun00000343

 The OCV consists of a spool valve that switches the passages for engine oil, a coil that moves the spool valve, a plunger, and a return spring.



#### Operation

• Based on the signals from the PCM, the spool valve inside the OCV moves up and down. With the up/down movement of the spool valve, the amount of oil supplied to the metering oil pump is controlled, and the oil pressure inside the metering oil pump is kept constant.



ar8uun00000345

 For OCV control, refer to CONTROL SYSTEM, OIL PRESSURE CONTROL. (See 01-40-21 OIL PRESSURE CONTROL OUTLINE [13B-MSP].)

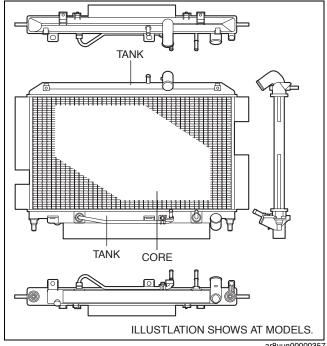
### 01-12

#### 01-12 **COOLING SYSTEM [13B-MSP]**

| COOLING SYSTEM OUTLINE | Construction           | 01-12-2 |
|------------------------|------------------------|---------|
| [13B-MSP]01-12-1       | Operation              | 01-12-2 |
| Features               | COOLING FAN COMPONENT  |         |
| RADIATOR CONSTRUCTION  | CONSTRUCTION/OPERATION |         |
| [13B-MSP]01-12-1       | [13B-MSP]              | 01-12-2 |
| WATER PUMP             | Construction           | 01-12-2 |
| CONSTRUCTION/OPERATION | Operation              | 01-12-3 |
| [13B-MSP]01-12-2       | •                      |         |

#### COOLING SYSTEM OUTLINE [13B-MSP]

id0112f2100100


#### **Features**

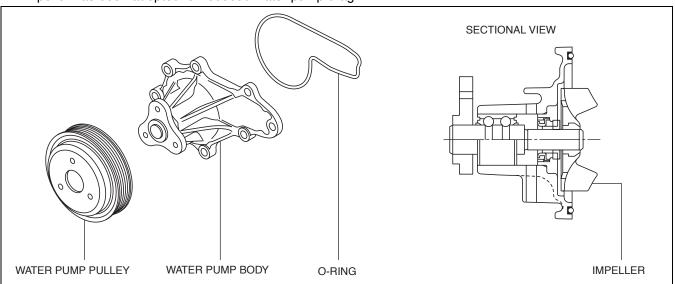
| Improved cooling performance | <ul><li>Radiator changed</li><li>Water pump changed</li><li>Cooling fan component changed</li></ul> |
|------------------------------|-----------------------------------------------------------------------------------------------------|
|------------------------------|-----------------------------------------------------------------------------------------------------|

### **RADIATOR CONSTRUCTION [13B-MSP]**

id0112f2142000

- A corrugated fin type radiator has been adopted.
- The radiator tanks are made of plastic and the core is made of aluminum for weight reduction.
- The down-flow direction of water inside the radiator causes air to bleed from the cooling system easier.
- The radiator has an ATF oil cooler in the lower radiator tank. (AT models)
- Four rubber-insulated mounting brackets are utilized to decrease vibration.
- To improve both the cooling ability and the sporty design, the radiator is designed to tilt forward to reduce the height and to take in the air from the inlet installed under the bumper.




# **COOLING SYSTEM [13B-MSP]**

#### WATER PUMP CONSTRUCTION/OPERATION [13B-MSP]

id0112f2100400

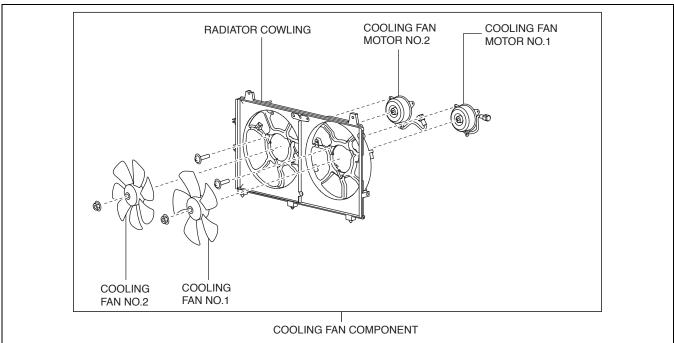
#### Construction

- The water pump consists of a steel water pump pulley, a water pump body made of aluminum alloy, and a Oring.
- The water pump with the impeller built into the front cover has been adopted for size reduction. A plastic
  impeller has been adopted for reduced water pump drag.



ar8uun00000355

#### Operation


• The water pump is driven by the drive belt.

### **COOLING FAN COMPONENT CONSTRUCTION/OPERATION [13B-MSP]**

id0112f2141900

### Construction

- The cooling fan component consists of the radiator cowling, cooling fans, and cooling fan motors.
- Electric cooling fans No.1 and No.2, which operate according to the fan control signal from the PCM, have been adopted. Due to this, engine noise has been reduced and rapid engine warming-up is possible.
- The radiator cowling and cooling fans are made of plastic for weight reduction.



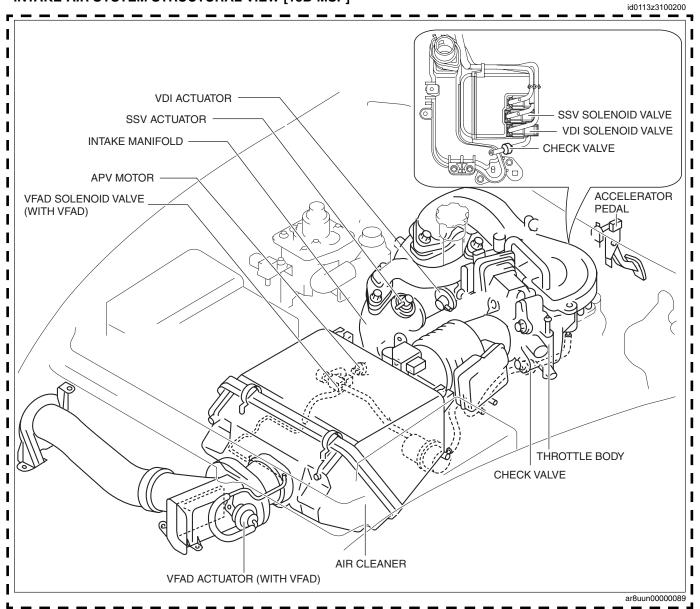
# **COOLING SYSTEM [13B-MSP]**

# Cooling fan, cooling fan motor specification

| Item                    |                  | Specification |       |       |
|-------------------------|------------------|---------------|-------|-------|
|                         | item             |               | No.1  | No.2  |
| Cooling for             | Number of blades |               | 5     | 7     |
| Cooling fan             | Outer diameter   | (mm {in})     | 300 { | 11.8} |
| Cooling fan motor outpu | it               | (W)           | 12    | 20    |

## Operation

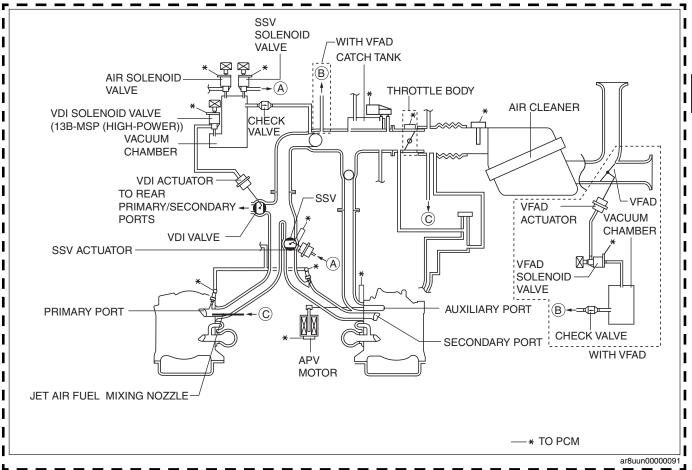
Cooling fans No.1 and No.2 operate according to the engine coolant temperature and whether the A/C is on or
off. Three-stage control has been adopted to the cooling fan with high, middle, and low speed rotation allowing
noise reduction and power savings. (See 01-40-23 ELECTRICAL FAN CONTROL OUTLINE [13B-MSP].)


01-12

# 01-13

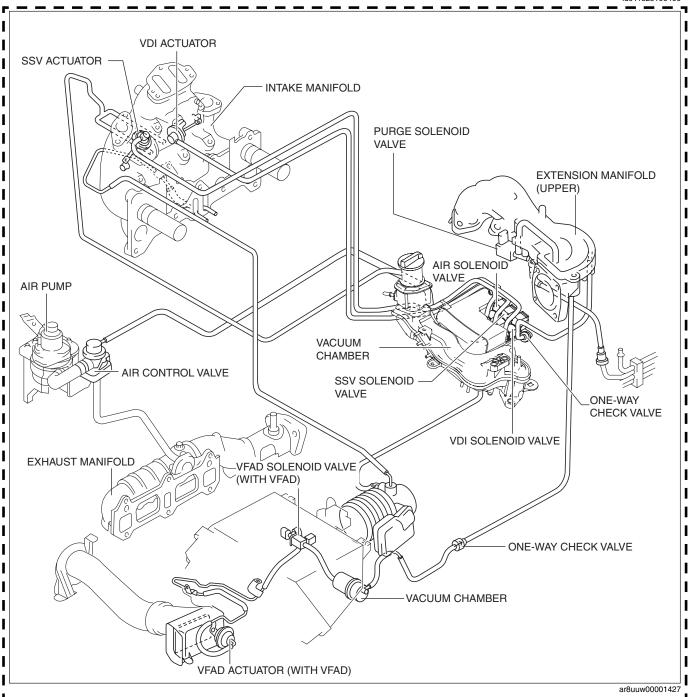
# 01-13 INTAKE-AIR SYSTEM [13B-MSP]

| INTAKE-AIR SYSTEM                 | SECONDARY SHUTTER VALVE          |
|-----------------------------------|----------------------------------|
| STRUCTURAL VIEW [13B-MSP] 01-13-2 | (SSV) SOLENOID VALVE             |
| INTAKE-AIR SYSTEM DIAGRAM         | CONSTRUCTION/OPERATION           |
| [13B-MSP]01-13–3                  | [13B-MSP]01-13-9                 |
| INTAKE-AIR SYSTEM VACUUM          | VARIABLE FRESH AIR DUCT          |
| HOSE ROUTING DIAGRAM              | (VFAD) SOLENOID VALVE            |
| [13B-MSP]01-13-4                  | FUNCTION [13B-MSP]01-13-10       |
| FRESH-AIR DUCT FUNCTION           | VARIABLE FRESH AIR DUCT          |
| [13B-MSP]01-13-5                  | (VFAD) SOLENOID VALVE            |
| FRESH-AIR DUCT                    | CONSTRUCTION/OPERATION           |
| CONSTRUCTION [13B-MSP] 01-13-5    | [13B-MSP]01-13–10                |
| INTAKE MANIFOLD                   | VARIABLE FRESH AIR DUCT          |
| CONSTRUCTION [13B-MSP] 01-13-5    | (VFAD) ACTUATOR FUNCTION         |
| SEQUENTIAL DYNAMIC AIR            | [13B-MSP]01-13–10                |
| INTAKE SYSTEM (S-DAIS)            | VARIABLE FRESH AIR DUCT          |
| STRUCTURE [13B-MSP] 01-13-6       | (VFAD) ACTUATOR                  |
| SEQUENTIAL DYNAMIC AIR            | CONSTRUCTION/OPERATION           |
| INTAKE SYSTEM (S-DAIS)            | [13B-MSP]01-13–10                |
| OPERATION [13B-MSP]01-13-7        | AUXILIARY PORT VALVE (APV)       |
| Operation Outline                 | MOTOR FUNCTION [13B-MSP]01-13-10 |
| Operation                         | AUXILIARY PORT VALVE (APV)       |
|                                   | MOTOR                            |
|                                   | CONSTRUCTION/OPERATION           |
|                                   | [13B-MSP]01-13-10                |
|                                   |                                  |


## **INTAKE-AIR SYSTEM STRUCTURAL VIEW [13B-MSP]**



### **INTAKE-AIR SYSTEM DIAGRAM [13B-MSP]**


id0113z3102200

01-13

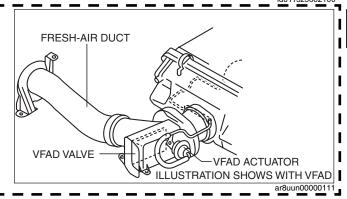


### INTAKE-AIR SYSTEM VACUUM HOSE ROUTING DIAGRAM [13B-MSP]

id0113z3100400



## 2009 Mazda RX-8 Service Highlights (3452-1U-08C) **INTAKE-AIR SYSTEM [13B-MSP]**

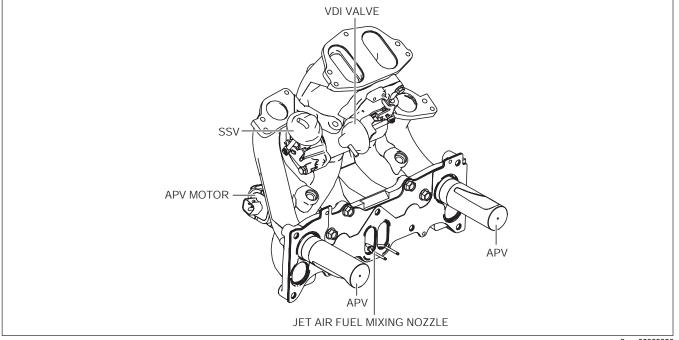

### FRESH-AIR DUCT FUNCTION [13B-MSP]

id0113z3141600

- Channels air to the air cleaner.
- The VFAD valve has been adopted, improving torque and output at the medium-high speed range. (with VFAD)

## FRESH-AIR DUCT CONSTRUCTION [13B-MSP]

 Composed of the fresh-air duct, VFAD actuator (with VFAD), and VFAD valve (with VFAD).




# INTAKE MANIFOLD CONSTRUCTION [13B-MSP]

id0113z3100800

#### Construction

• Composed of the SSV, VDI valve, APV, APV motor, jet air fuel mixing nozzles, and body.



ar8uun00000090

Revised 11/2008 (Ref. No. R321/08)

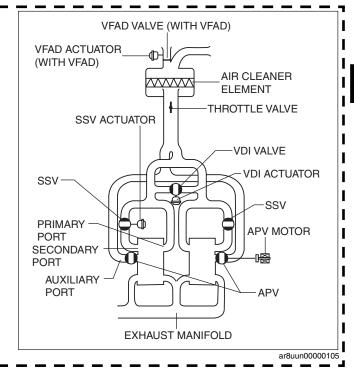
01-13-5

01-13

### 2009 Mazda RX-8 Service Highlights (3452-1U-08C) **INTAKE-AIR SYSTEM [13B-MSP]**

## SEQUENTIAL DYNAMIC AIR INTAKE SYSTEM (S-DAIS) STRUCTURE [13B-MSP]

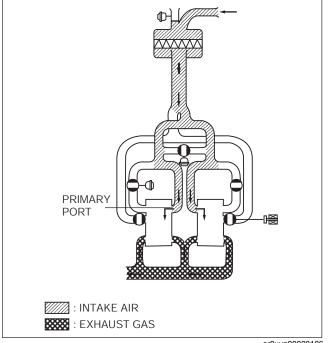
• The S-DAIS is composed of the SSV, VDI valve, and VFAD valve (with VFAD) which are opened and closed by intake manifold vacuum or BARO, and the APV which is opened and closed by motor drive. VDI VALVE SSV **VDI ACTUATOR** SSV ACTUATOR EXTENSION MANIFOLD (UPPER) INTAKE MANIFOLD APV MOTOR SSV SOLENOID VALVE VDI SOLENOID VALVE CHECK VALVE **VACUUM CHAMBER** VFAD SOLENOID VALVE (WITH VFAD) **CHECK VALVE** VACUUM CHAMBER VFAD VALVE (WITH VFAD)


VFAD ACTUATOR (WITH VFAD)

#### SEQUENTIAL DYNAMIC AIR INTAKE SYSTEM (S-DAIS) OPERATION [13B-MSP]

id0113z3661600

Operation Outline


 To increase intake air amount and combustion efficiency, the S-DAIS controls the size of the intake ports and the air length in the intake pipes by opening or closing the SSV, VDI valve, APV, and VFAD valve (with VFAD) according to engine speed and load condition.

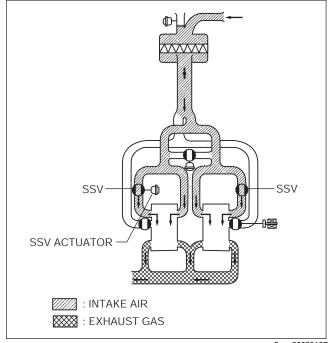


## Operation

#### Low-speed range

 At the low-speed range, the secondary and auxiliary ports close, and a high velocity intake air amount is fed from only the primary port. Due to this, better combustion efficiency is obtained by the improved fuel atomization, producing high torque output.

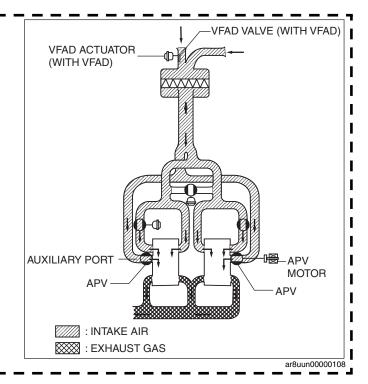



ar8uun00000106

01-13

# 2009 Mazda RX-8 Service Highlights (3452–1U–08C) INTAKE-AIR SYSTEM [13B-MSP]

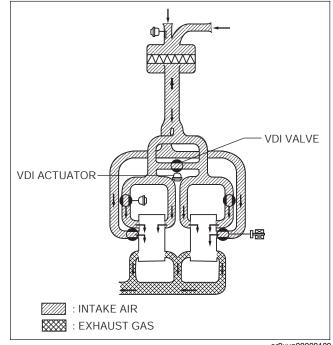
#### Medium-speed range


 When the engine speed reaches the medium range, the SSV opens and intake air from the secondary port begins. Due to this, the intake air amount increases, improving torque at the engine medium-speed range.



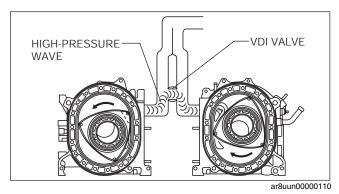
ar8uun00000107

## Medium-to-high-speed range


- When the engine speed reaches the mediumtohigh range, the VFAD (with VFAD) and APV open.
- When the VFAD valve (with VFAD) opens, intake air resistance is reduced by the shortening of air length in the fresh-air duct pipe.
- When the APV opens, air from all intake ports is fed, improving torque at the medium-to-highspeed range.



### 2009 Mazda RX-8 Service Highlights (3452-1U-08C) **INTAKE-AIR SYSTEM [13B-MSP]**

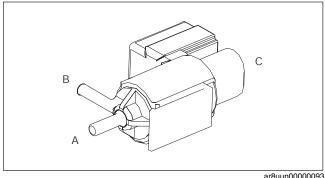

#### High-speed range

• When the engine speed reaches the high range, the VDI valve opens, and the actual length of the intake air in the pipe is shortened to efficiently provide dynamic air charging effect.



ar8uun00000109

• When the intake ports are shut abruptly, the intake air does not stop due to the inertia effect and it becomes compressed and highly pressurized. This pressurized air becomes a reflected high-pressure wave that pressurizes the intake air in the rotor chambers. This is dynamic air charging pressurization. The intake air amount is increased by the dynamic air charging effect, improving torque at the high-speed range.




# SECONDARY SHUTTER VALVE (SSV) SOLENOID VALVE CONSTRUCTION/OPERATION [13B-MSP]

- Composed of a solenoid coil, spring, plunger, and filter. **Energized** 
  - When the solenoid coil is energized, the plunger is pulled back. Pulling the plunger back opens the passage between ports A and B. Due to this, intake manifold vacuum is applied to the actuator.

#### De-energized

 Passage of port A is closed by the reaction force of the spring, and the passage between ports B and C is opened. Due to this, BARO is applied to the actuator.



## 2009 Mazda RX-8 Service Highlights (3452–1U–08C) **INTAKE-AIR SYSTEM [13B-MSP]**

### VARIABLE FRESH AIR DUCT (VFAD) SOLENOID VALVE FUNCTION [13B-MSP]

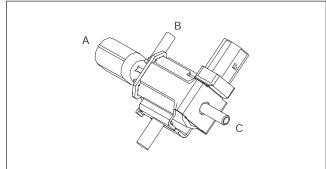
id0113z3662500

# With VFAD

 Switches pressure (intake manifold vacuum or BARO) applied to the VFAD actuator according to a signal from the PCM.

# VARIABLE FRESH AIR DUCT (VFAD) SOLENOID VALVE CONSTRUCTION/OPERATION [13B-MSP]

# With VFAD


Composed of a solenoid coil, spring, plunger, and filter.

#### **Energized**

 When the solenoid coil is energized, the plunger is pulled back. Pulling the plunger back opens the passage between ports A and B. Due to this, BARO is applied to the actuator.

#### De-energized

 Passage of port A is closed by the reaction force of the spring, and the passage between ports B and C is opened. Due to this, intake manifold vacuum is applied to the actuator.

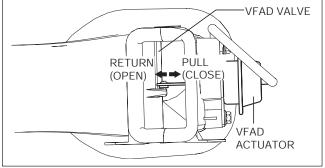


ar8uun00000094

#### VARIABLE FRESH AIR DUCT (VFAD) ACTUATOR FUNCTION [13B-MSP]

#### id0113z3663300

# With VFAD


Opens and closes the VFAD valve.

#### VARIABLE FRESH AIR DUCT (VFAD) ACTUATOR CONSTRUCTION/OPERATION [13B-MSP]

id0113z3663400

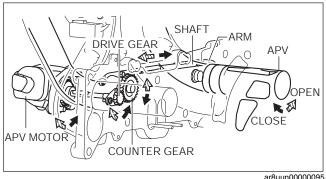
# With VFAD

- A diaphragm design has been adopted.
- Normally, the rod is pushed by the force of the spring, opening the VFAD valve. When intake manifold vacuum is applied to the diaphragm chamber, the rod is pulled, closing the VFAD valve.



ar8uun00000096

#### **AUXILIARY PORT VALVE (APV) MOTOR FUNCTION [13B-MSP]**


Drives the APV motor to open or close the APV according to a signal from the PCM.

id0113z3663100

#### AUXILIARY PORT VALVE (APV) MOTOR CONSTRUCTION/OPERATION [13B-MSP]

id0113z3663200

- The position sensor is built into the APV motor. The motor is driven according to an operation signal from the PCM.
- The motor driving force is transmitted to the drive gear, counter gear, shaft, and arm, thereby opening or closing the APV.



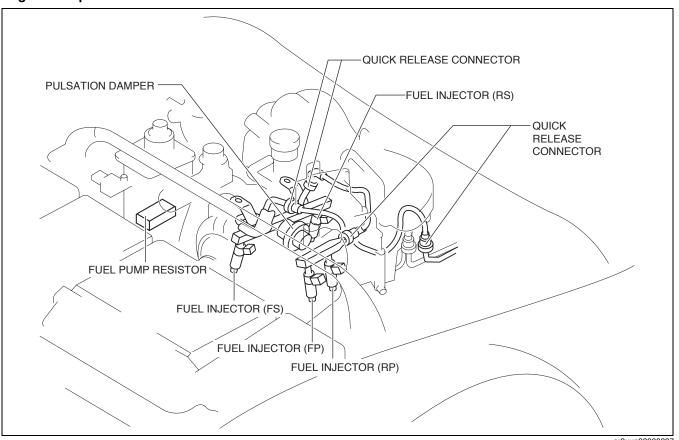
## 01-14

# 01-14 FUEL SYSTEM [13B-MSP]

| FUEL SYSTEM OUTLINE             | FUEL SYSTEM DIAGRAM    |
|---------------------------------|------------------------|
| [13B-MSP]01-14-1                | [13B-MSP]01-14-2       |
| FUEL SYSTEM STRUCTURAL          | FUEL TANK CONSTRUCTION |
| VIEW [13B-MSP] 01-14-1          | [13B-MSP]01-14-3       |
| Engine Compartment Side 01-14-1 | FUEL INJECTOR          |
| Fuel Tank Side                  | CONSTRUCTION/OPERATION |
|                                 | [13B-MSP]01-14-3       |

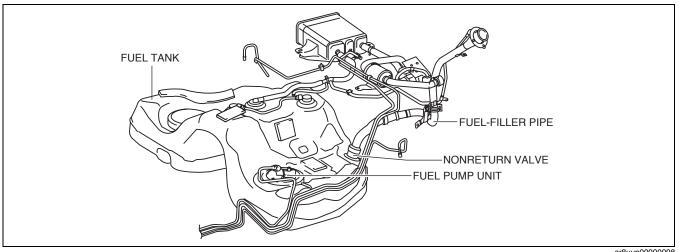
## **FUEL SYSTEM OUTLINE [13B-MSP]**

id0114z2100100


### **Specification**

| Item               |                       | Specification     |
|--------------------|-----------------------|-------------------|
| Fuel tank capacity | (L {US gal, lmp gal}) | 64.0 {16.9, 14.1} |

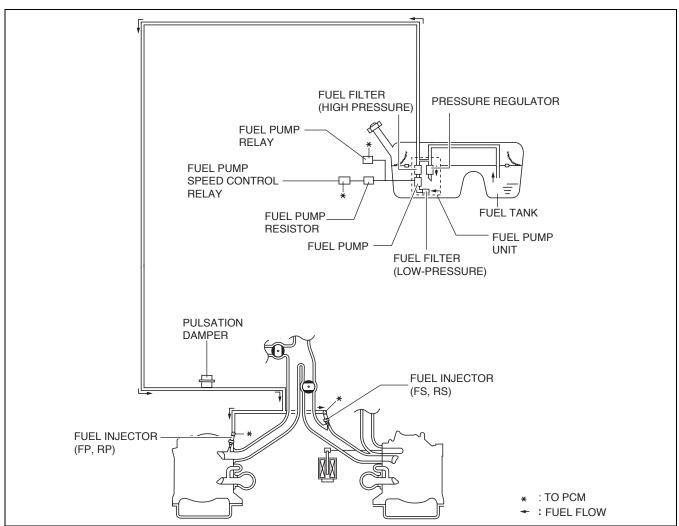
## **FUEL SYSTEM STRUCTURAL VIEW [13B-MSP]**


id0114z2100200

## **Engine Compartment Side**



# **FUEL SYSTEM [13B-MSP]**


#### **Fuel Tank Side**



ar8uun00000098

# **FUEL SYSTEM DIAGRAM [13B-MSP]**

id0114z2573500



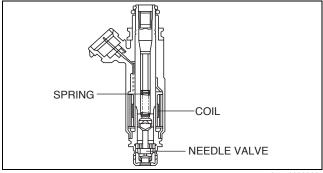
ar8uuw00001337

id0114z2101900

- Fuel tank capacity is 64.0 L {16.9 US gal, 14.1 Imp gal}.
- Includes two rollover valves, and the fuel shut-off valve that is press-fitted in the evaporative hose above the
  fuel tank.

### FUEL INJECTOR CONSTRUCTION/OPERATION [13B-MSP]

id0114z2101300


01-14

#### Fuel Injector (FP, RP)

- Installed on the intermediate housing at an angle of approx. 45°, and injects fuel near the intake port opening.
- Mainly consists of a coil, spring and needle valve.
- Fuel injector with 12 injection holes and injection angle of approx. 30° adopted to enhance fuel injection vaporization.
- When a PCM signal is sent, exciting current passes through the coil, pulling in the needle valve and injecting fuel
- The amount of injection is determined by the open time of the needle valve, i.e. the energization time of the coil.

### Fuel Injector (FS, RS)

- Installed on the intake manifold.
- Mainly consists of a coil, spring, and needle valve.
- Injects fuel into the intake manifold at an angle of approx. 19°, so that the fuel is drawn into the housing together with intake air.
- When a PCM signal is sent, exciting current passes through the coil, pulling in the needle valve and injecting fuel.
- The amount of injection is determined by the open time of the needle valve, i.e. the energization time of the coil.

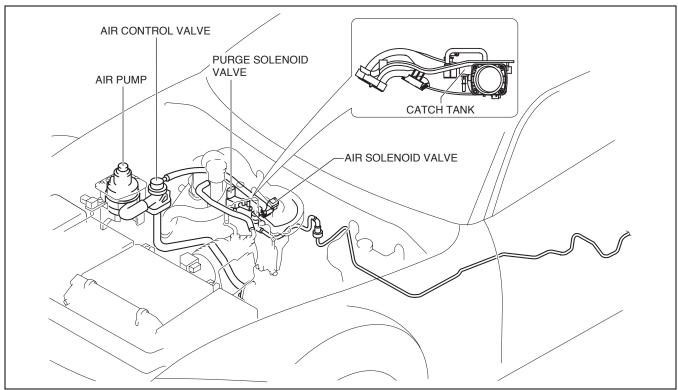


ar8uun00000099

01-14-3

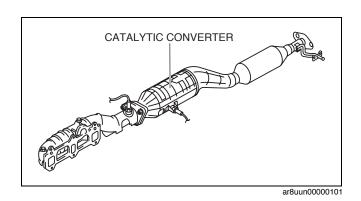
# 01-16 EMISSION SYSTEM [13B-MSP]

| EMISSION SYSTEM           |         |
|---------------------------|---------|
| STRUCTURAL VIEW [13B-MSP] | 01-16-1 |
| Engine Compartment Side   | 01-16-1 |
| Exhaust System            | 01-16-1 |
| Fuel Tank Side            | 01-16-2 |


| POSITIVE CRANKCASE          |          |
|-----------------------------|----------|
| VENTILATION (PCV) SYSTEM    |          |
| STRUCTURE [13B-MSP]         | .01-16-2 |
| EVAPORATIVE EMISSION (EVAP) |          |
| CONTROL SYSTEM STRUCTURE    |          |
| [13B-MSP]                   | .01-16-3 |
|                             |          |

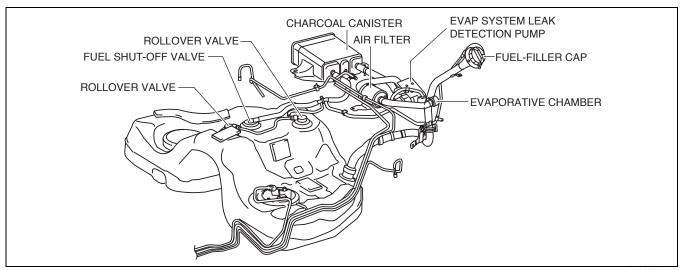
01-16

## **EMISSION SYSTEM STRUCTURAL VIEW [13B-MSP]**


id0116z2100200

### **Engine Compartment Side**

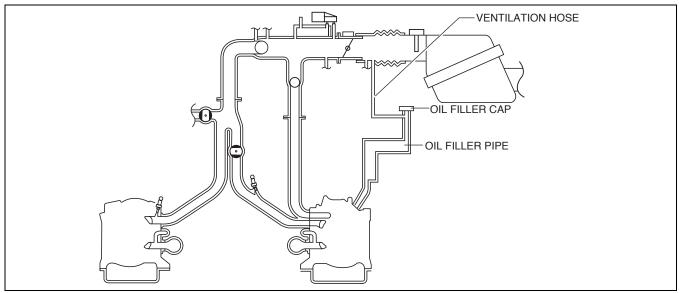



ar8uun00000100

# **Exhaust System**

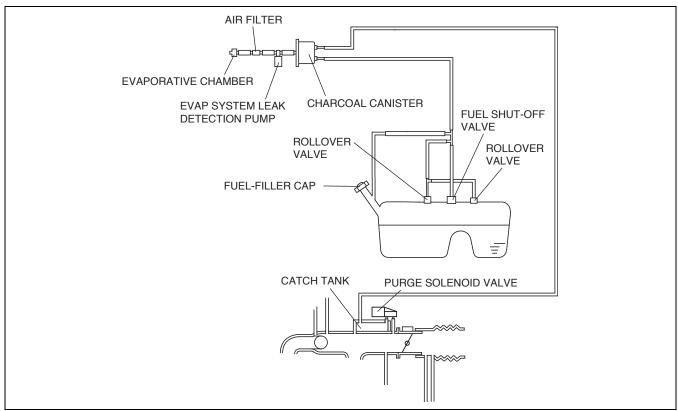


# **EMISSION SYSTEM [13B-MSP]**


#### **Fuel Tank Side**



ar8uun00000102


# POSITIVE CRANKCASE VENTILATION (PCV) SYSTEM STRUCTURE [13B-MSP]

id0116z2159000



id0116z2100900

• Consists of a purge solenoid valve, charcoal canister, catch tank, evaporative chamber, rollover valves, fuel shut-off valve, EVAP system leak detection pump, air filter, and fuel-filler cap.



ar8uun00000103

01-16-3

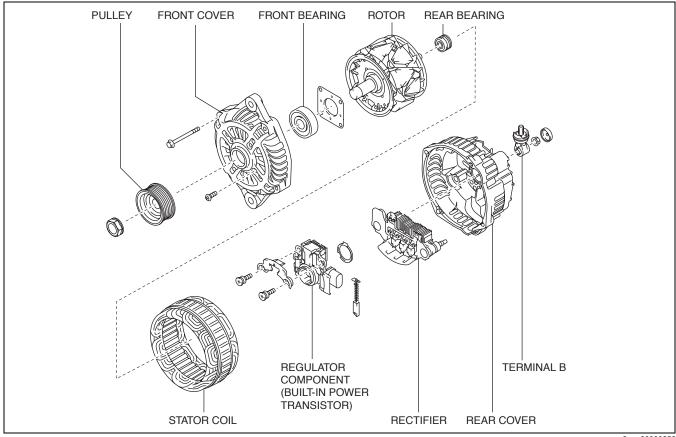
01-16

# 01-17 CHARGING SYSTEM [13B-MSP]

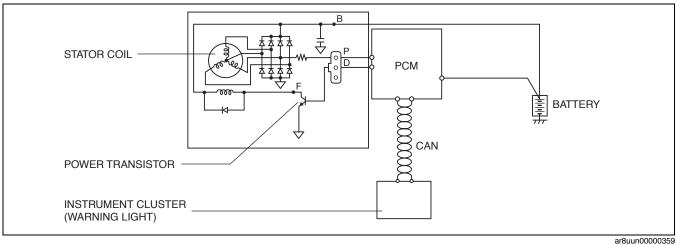
| CHARGING SYSTEM OUT | TLINE   | GENERATOR CONST | RUCTION |
|---------------------|---------|-----------------|---------|
| [13B-MSP]           | 01-17–1 | [13B-MSP]       | 01-17–1 |
| Foatures            | 01-17-1 |                 |         |

# id0117f2102100

01-17


### **CHARGING SYSTEM OUTLINE [13B-MSP]**

#### **Features**


| Improved generator output | Generator changed |
|---------------------------|-------------------|

### **GENERATOR CONSTRUCTION [13B-MSP]**

• With the elimination of the voltage regulator, generator control is carried out by the PCM. Excitation current in the field coil is increased or decreased by the duty signal from the PCM sent to the power transistor built into the generator.



# **CHARGING SYSTEM [13B-MSP]**



• If there is malfunction in the charging system, the generator warning light in the instrument cluster illuminates. (See 01-02-4 ON-BOARD DIAGNOSTIC SYSTEM TEST MODE [13B-MSP].)

## **CRUISE CONTROL SYSTEM [13B-MSP]**

## 01-20 CRUISE CONTROL SYSTEM [13B-MSP]

# CRUISE CONTROL SYSTEM OUTLINE [13B-MSP] 01-20-1 Features 01-20-1 Outline 01-20-1 Component and function 01-20-1

CRUISE CONTROL SYSTEM
STRUCTURAL VIEW [13B-MSP].....01-20-2
CRUISE CONTROL SYSTEM
BLOCK DIAGRAM [13B-MSP] .....01-20-3

01-20

#### **CRUISE CONTROL SYSTEM OUTLINE [13B-MSP]**

id0120f2145200

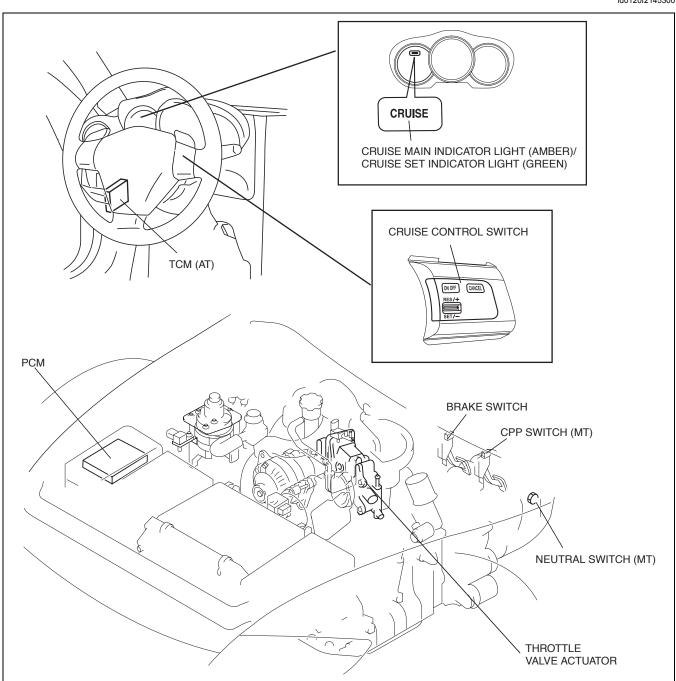
la stallation

#### **Features**

|  | Improved driveability | Cruise control switch changed |
|--|-----------------------|-------------------------------|
|--|-----------------------|-------------------------------|

#### **Outline**

- The cruise control system enables driving at a constant speed by setting vehicle speed with the cruise control switch instead of operating the AP.
- The PCM controls the throttle valve actuator to maintain the vehicle at a constant speed.
- For the control of the cruise control system, refer to the drive-by wire control.


#### Component and function

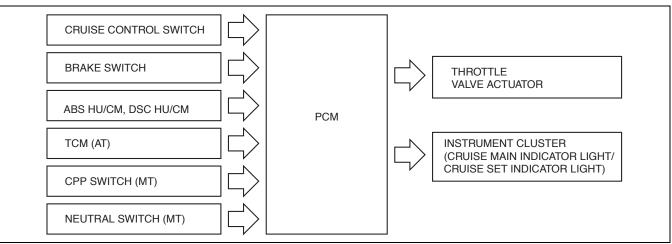
| Compo                                                                     | onent                                   | Function                                                         | Installation location                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|---------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| ABS HU/CM communicati speed signal     DSC HU/CM communicati speed signal | on: Vehicle<br>)<br>(CAN<br>on: Vehicle | The vehicle<br>the DSC H                                         | Engine compartment                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                                           | ON/OFF                                  | ON/OFF                                                           | This is the main switch of the cruise control system. Turning the ON/OFF switch to on switches the cruise control system to standby status.                                                                                                                                            |  |  |  |  |  |
| Cruise control                                                            | SET (-)                                 | SET (-)                                                          | vehicle speed at the time of the switch is released and the cruise control begins.                                                                                                                                                                                                     |  |  |  |  |  |
| switch                                                                    | RES (+)                                 | RES (+)                                                          | If the RES (+) switch is pressed while the cruise control is in standby status (PCM has stored a set vehicle speed) and the vehicle speed exceeds 27 km/h {16.7 mph} during normal driving, the cruise control system activates to control the vehicle speed to the set vehicle speed. |  |  |  |  |  |
|                                                                           | CANCEL                                  | CANCEL                                                           | Pressing the CANCEL switch during cruise control switches the cruise control system to standby status (Set vehicle speed is saved).                                                                                                                                                    |  |  |  |  |  |
| Brake switch                                                              |                                         |                                                                  | Depressing the brake pedal during cruise control switches the cruise control system to standby status (Set vehicle speed is saved).                                                                                                                                                    |  |  |  |  |  |
| CPP switch (MT)                                                           | )                                       | Depressing system to                                             | Clutch pedal                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Neutral switch (N                                                         | MT)                                     | Shifting to standby sta                                          | Manual transmission                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| TCM (AT) (CAN communication:                                              | Neutral signal)                         | Changing control swi                                             | Automatic transmission                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| PCM                                                                       |                                         | <ul><li>The cru<br/>switch</li><li>The thr<br/>vehicle</li></ul> | Engine compartment                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Throttle valve ac                                                         |                                         | The duty s                                                       | Throttle body                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Cruise main indi                                                          |                                         | This illumin                                                     | Instrument cluster                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Cruise set indica                                                         | ator light                              | i nis illumir                                                    | This illuminates while the cruise control system is in control status.                                                                                                                                                                                                                 |  |  |  |  |  |

## **CRUISE CONTROL SYSTEM [13B-MSP]**

## CRUISE CONTROL SYSTEM STRUCTURAL VIEW [13B-MSP]

id0120f2145300




ar8uun00000227

## **CRUISE CONTROL SYSTEM [13B-MSP]**

## CRUISE CONTROL SYSTEM BLOCK DIAGRAM [13B-MSP]

id0120f2665700

01-20



ar8uun00000228

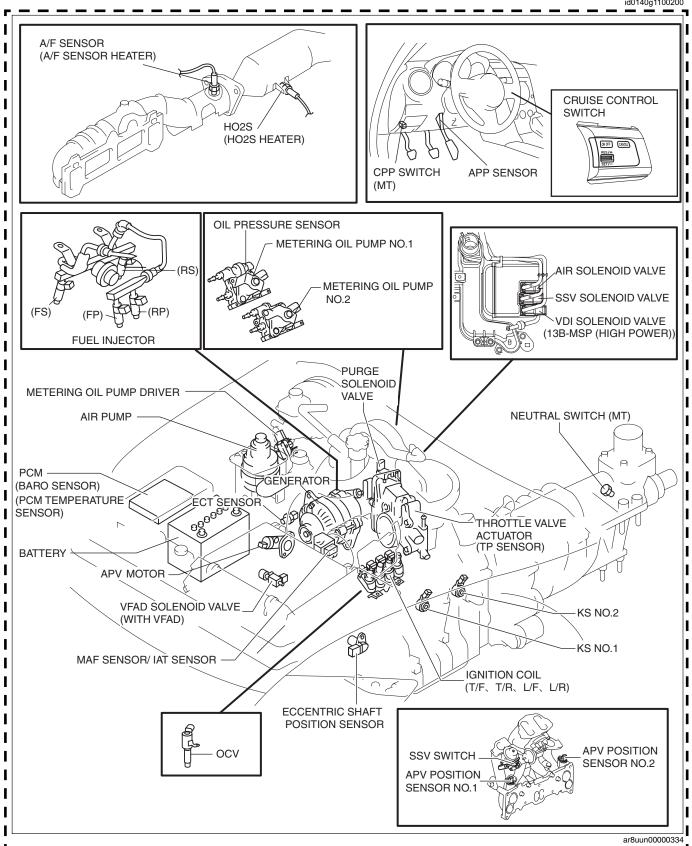
| ENCINE CONTROL SYSTEM                        | AID ELIEL DATIO (A/E) CENCOD    |
|----------------------------------------------|---------------------------------|
| ENGINE CONTROL SYSTEM                        | AIR FUEL RATIO (A/F) SENSOR,    |
| OUTLINE [13B-MSP] 01-40-2                    | HEATED OXYGEN SENSOR (HO2S)     |
| Features 01-40-2                             | HEATER CONTROL OUTLINE          |
| Specification                                | [13B-MSP]                       |
| ENGINE CONTROL SYSTEM                        | AIR FUEL RATIO (A/F) SENSOR,    |
| STRUCTURAL VIEW [13B-MSP] 01-40-3            | HEATED OXYGEN SENSOR (HO2S)     |
| ENGINE CONTROL SYSTEM                        | HEATER CONTROL BLOCK            |
| DIACDAM (12D MCD) 01 40 4                    |                                 |
| DIAGRAM [13B-MSP] 01-40-4                    | DIAGRAM [13B-MSP]01-40-22       |
| ENGINE CONTROL SYSTEM                        | AIR FUEL RATIO (A/F) SENSOR,    |
| WIRING DIAGRAM [13B-MSP] 01-40-5             | HEATED OXYGEN SENSOR (HO2S)     |
| ENGINE CONTROL SYSTEM                        | HEATER CONTROL OPERATION        |
| BLOCK DIAGRAM [13B-MSP] 01-40-7              | [13B-MSP]                       |
| ENGINE CONTROL SYSTEM                        | Operation Conditions01-40-23    |
| RELATION CHART [13B-MSP] 01-40-8             | ELECTRICAL FAN CONTROL          |
| DRIVE-BY-WIRE RELAY CONTROL                  | OUTLINE [13B-MSP]01-40-23       |
|                                              | FUNCTOR AND CONTROL             |
| OPERATION [13B-MSP]01-40-9                   | ELECTRICAL FAN CONTROL          |
| Idle Speed Control 01-40-9                   | BLOCK DIAGRAM [13B-MSP]01-40-23 |
| Accelerator Control 01-40-10                 | ELECTRICAL FAN CONTROL          |
| Traction Control                             | OPERATION [13B-MSP]01-40-23     |
| Cruise Control                               | PCM FUNCTION [13B-MSP] 01-40-25 |
| Vehicle Speed Limiter (AT) 01-40-12          | Function List                   |
| SEQUENTIAL DYNAMIC AIR                       | PCM CONSTRUCTION/OPERATION      |
|                                              |                                 |
| INTAKE SYSTEM (S-DAIS)                       | [13B-MSP]01-40-25               |
| CONTROL OUTLINE [13B-MSP] 01-40-12           | AIR FUEL RATIO (A/F) SENSOR     |
| SEQUENTIAL DYNAMIC AIR                       | FUNCTION [13B-MSP]01-40-25      |
| INTAKE SYSTEM (S-DAIS)                       | AIR FUEL RATIO (A/F) SENSOR     |
| CONTROL BLOCK DIAGRAM                        | CONSTRUCTION/OPERATION          |
| [13B-MSP]01-40-12                            | [13B-MSP]01-40-26               |
| SEQUENTIAL DYNAMIC AIR                       | HEATED OXYGEN SENSOR (HO2S)     |
|                                              |                                 |
| INTAKE SYSTEM (S-DAIS)                       | FUNCTION [13B-MSP]01-40-26      |
| CONTROL OPERATION [13B-MSP] 01-40-13         | HEATED OXYGEN SENSOR (HO2S)     |
| Operation Outline                            | CONSTRUCTION/OPERATION          |
| Operation list                               | [13B-MSP]01-40-26               |
| Operation                                    | PCM TEMPERATURE SENSOR          |
| FUEL INJECTION CONTROL                       | FUNCTION [13B-MSP]01-40-27      |
| OUTLINE [13B-MSP] 01-40-13                   | PCM TEMPERATURE SENSOR          |
| FUEL INJECTION CONTROL                       | CONSTRUCTION/OPERATION          |
|                                              |                                 |
| BLOCK DIAGRAM [13B-MSP] 01-40-14             | [13B-MSP]01-40-27               |
| FUEL INJECTION CONTROL                       | KNOCK SENSOR (KS)               |
| OPERATION [13B-MSP] 01-40-14                 | CONSTRUCTION/OPERATION          |
| Fuel Injection Timing 01-40–14               | [13B-MSP]01-40-27               |
| Air/fuel Ratio Control 01-40–16              | BAROMETRIC PRESSURE (BARO)      |
| Fuel Injection Distribution Control 01-40-17 | SENSOR                          |
| Synchronized Injection Control 01-40-17      | CONSTRUCTION/OPERATION          |
| Non-synchronized Injection Control 01-40–19  | [13B-MSP]01-40-28               |
| Fuel Cut Control                             | AUXILIARY PORT VALVE (APV)      |
|                                              |                                 |
| METERING OIL PUMP CONTROL                    | POSITION SENSOR FUNCTION        |
| OUTLINE [13B-MSP] 01-40-20                   | [13B-MSP]01-40-28               |
| METERING OIL PUMP CONTROL                    | AUXILIARY PORT VALVE (APV)      |
| BLOCK DIAGRAM [13B-MSP] 01-40-20             | POSITION SENSOR                 |
| METERING OIL PUMP CONTROL                    | CONSTRUCTION/OPERATION          |
| OPERATION [13B-MSP]01-40-20                  | [13B-MSP]01-40-28               |
| Outline                                      | OIL PRESSURE SENSOR             |
| Operation timing                             | FUNCTION [13B-MSP]01-40-29      |
|                                              |                                 |
| Ignition switch off function 01-40–21        | OIL PRESSURE SENSOR             |
| OIL PRESSURE CONTROL                         | CONSTRUCTION/OPERATION          |
| OUTLINE [13B-MSP] 01-40-21                   | [13B-MSP]01-40-29               |
| OIL PRESSURE CONTROL                         | METERING OIL PUMP DRIVER        |
| BLOCK DIAGRAM [13B-MSP] 01-40-21             | FUNCTION [13B-MSP]01-40-29      |
| OIL PRESSURE CONTROL                         | METERING OIL PUMP DRIVER        |
| OPERATION [13B-MSP] 01-40-21                 | CONSTRUCTION/OPERATION          |
| Operation                                    | [13B-MSP]01-40-29               |
| Oporation                                    | [10D-MO1]1-40-23                |

## ENGINE CONTROL SYSTEM OUTLINE [13B-MSP]

### **Features**

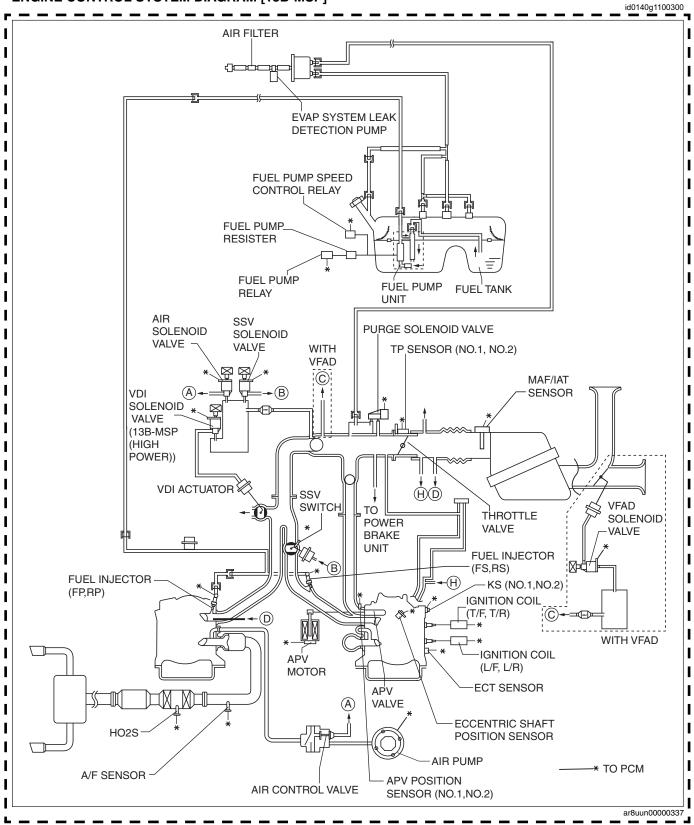
id0140g1100100

| Improved engine torque and output | <ul><li>S-DAIS control changed</li><li>APV position sensor No.1, No.2 adopted</li></ul>                                                                                    |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Improved engine reliability       | <ul> <li>KS No.1, No.2 adopted</li> <li>Electrical fan control changed</li> <li>Fuel injection control changed</li> </ul>                                                  |
| Improved lubricity                | <ul> <li>Metering oil pump control changed</li> <li>Metering oil pump driver adopted</li> <li>Oil pressure control adopted</li> <li>Oil pressure sensor adopted</li> </ul> |

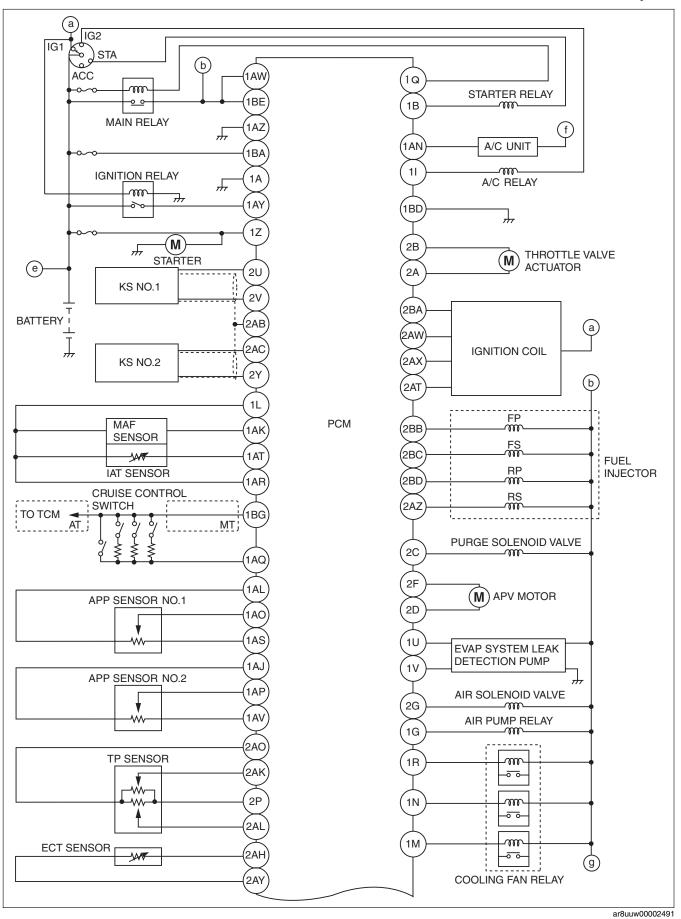

## Specification

| Item                                    | Specification                                           |  |  |  |  |  |  |
|-----------------------------------------|---------------------------------------------------------|--|--|--|--|--|--|
| Neutral switch (MT)                     | ON/OFF                                                  |  |  |  |  |  |  |
| CPP switch (MT)                         | ON/OFF                                                  |  |  |  |  |  |  |
| SSV switch                              | ON/OFF                                                  |  |  |  |  |  |  |
| Cruise control switch                   | ON/OFF                                                  |  |  |  |  |  |  |
| APV position sensor No.1, No.2          | Magneto resistance element                              |  |  |  |  |  |  |
| ECT sensor                              | Thermistor                                              |  |  |  |  |  |  |
| IAT sensor                              | Thermistor                                              |  |  |  |  |  |  |
| TP sensor                               | Hall element                                            |  |  |  |  |  |  |
| APP sensor                              | Hall element                                            |  |  |  |  |  |  |
| MAF sensor                              | Hot-wire                                                |  |  |  |  |  |  |
| A/F sensor                              | Zirconia element (Wide-range air/fuel ratio sensor)     |  |  |  |  |  |  |
| HO2S                                    | Zirconia element (Stoichiometric air/fuel ratio sensor) |  |  |  |  |  |  |
| KS No.1, No.2                           | Piezoelectric element                                   |  |  |  |  |  |  |
| Eccentric shaft position sensor         | Magnetic pickup                                         |  |  |  |  |  |  |
| Oil pressure sensor                     | Piezoelectric element                                   |  |  |  |  |  |  |
| BARO sensor (built into PCM)            | Piezoelectric element                                   |  |  |  |  |  |  |
| PCM temperature sensor (built into PCM) | Thermistor                                              |  |  |  |  |  |  |

#### **ENGINE CONTROL SYSTEM STRUCTURAL VIEW [13B-MSP]**

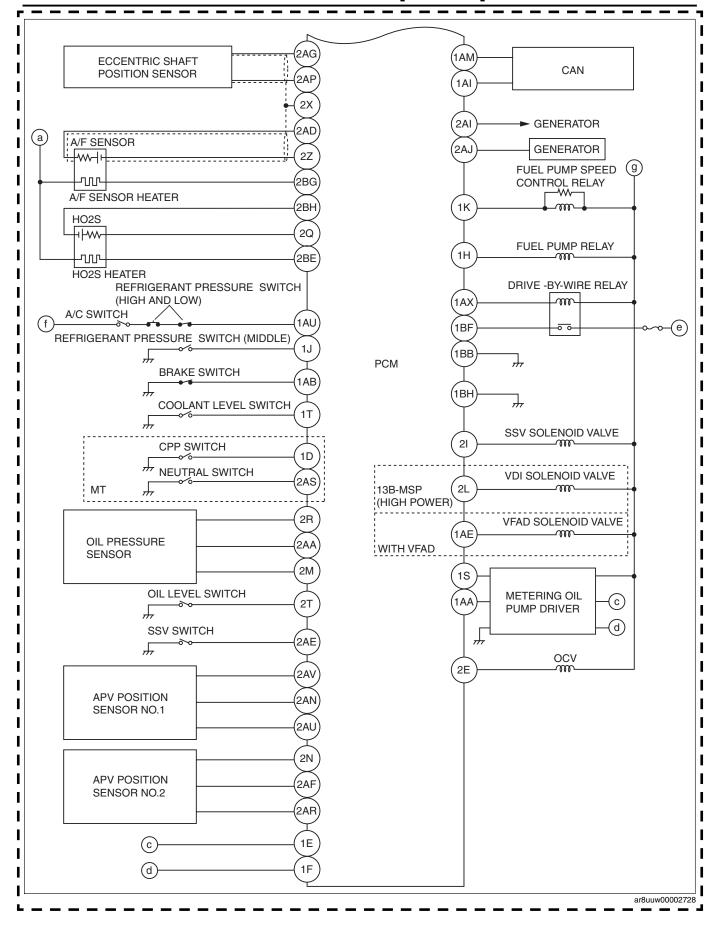

id0140g1100200

01-40




01 - 40 - 3

#### **ENGINE CONTROL SYSTEM DIAGRAM [13B-MSP]**




id0140g1100400



01-40-5

01-40



#### **ENGINE CONTROL SYSTEM BLOCK DIAGRAM [13B-MSP]**

id0140g1100500 **PCM** MAIN RELAY MAIN RELAY CONTROL **ECT SENSOR** DRIVE-BY-WIRE RELAY KS NO.1, NO.2 **DRIVE-BY-WIRE RELAY CONTROL** THROTTLE VALVE ACTUATOR IAT SENSOR VDI SOLENOID VALVE MAF SENSOR DRIVE-BY-WIRE CONTROL (13B-MSP(HIGH POWER)) VFAD SOLENOID VALVE A/F SENSOR (WITH VFAD) HO2S S-DAIS CONTROL SSV SOLENOID VALVE **GENERATOR** APV MOTOR (TERMINAL P: STATOR COIL) BARO SENSOR (BUILT INTO PCM) **FUEL INJECTION CONTROL** FUEL INJECTOR (FP, FS) **BATTERY** FUEL INJECTOR (RP, RS) FUEL PUMP CONTROL OIL PRESSURE SENSOR **FUEL PUMP RELAY** PCM TEMPERATURE SENSOR **FUEL PUMP SPEED** (BUILT INTO PCM) **FUEL PUMP CONTROL RELAY** SPEED CONTROL TP SENSOR NO.1, NO.2 IGNITION COIL (T/F, T/R) APP SENSOR NO.1, NO.2 ELECTRIC SPARK IGNITION COIL (L/F, L/R) ADVANCE CONTROL APV POSITION SENSOR NO.1, NO.2 AIR SOLENOID VALVE AIR CONTROL **ECCENTRIC SHAFT POSITION SENSOR** AIR PUMP RELAY CPP SWITCH (MT) **EVAPORATIVE** PURGE CONTROL PURGE SOLENOID VALVE **NEUTRAL SWITCH (MT)** METERING OIL PUMP DRIVER METERING OIL **BRAKE SWITCH** PUMP CONTROL OCV METERING OIL PUMP NO.1, NO.2 OIL PRESSURE CONTROL A/F SENSOR HEATER REFRIGERANT PRESSURE SWITCH (MIDDLE) HO2S HEATER A/F SENSOR HEATR, A/C SWITCH HO2S HEATER CONTROL A/C RELAY **IGNITION SWITCH** A/C CUT-OFF CONTROL **COOLING FAN RELAY** NO.1, NO.2, NO.3, NO.4, NO.5 SSV SWITCH **ELECTRICAL FAN** STARTER RELAY CONTROL CRUISE CONTROL SWITCH **GENERATOR** STARTER CUT-OFF CONTROL (TERMINAL D: FIELD COIL) CAN **GENERATOR CONTROL** CAN CAN ar8uun00000338

01-40

## 2009 Mazda RX-8 Service Highlights (3452–1U–08C) CONTROL SYSTEM [13B-MSP]

## **ENGINE CONTROL SYSTEM RELATION CHART [13B-MSP]**

id0140g1100600

• Each control system and their related input and output parts are as follows.

| • Each control system and                           |                    |                             |                                       |                | ۰                      | Julpo             |                         | u.                             |             |                           |                           |                     |                                        |                     |                        |                         |                   |     |
|-----------------------------------------------------|--------------------|-----------------------------|---------------------------------------|----------------|------------------------|-------------------|-------------------------|--------------------------------|-------------|---------------------------|---------------------------|---------------------|----------------------------------------|---------------------|------------------------|-------------------------|-------------------|-----|
| Item                                                | MAIN RELAY CONTROL | DRIVE-BY-WIRE RELAY CONTROL | DRIVE-BY-WIRE CONTROL                 | S-DAIS CONTROL | FUEL INJECTION CONTROL | FUEL PUMP CONTROL | FUEL PUMP SPEED CONTROL | ELECTRIC SPARK ADVANCE CONTROL | AIR CONTROL | EVAPORATIVE PURGE CONTROL | METERING OIL PUMP CONTROL | OIL PRESURE CONTROL | A/F SENSOR HEATER, HO2S HEATER CONTROL | A/C CUT-OFF CONTROL | ELECTRICAL FAN CONTROL | STARTER CUT-OFF CONTROL | GENERATOR CONTROL | CAN |
| Input                                               |                    |                             |                                       |                |                        |                   |                         |                                |             |                           |                           |                     |                                        |                     |                        |                         |                   |     |
| ECT sensor                                          | ×                  |                             | ×                                     | ×              | ×                      |                   |                         | ×                              | ×           | ×                         | ×                         | ×                   | ×                                      | ×                   | ×                      |                         | ×                 |     |
| KS No.1, No.2                                       |                    |                             |                                       |                |                        |                   |                         | ×                              |             |                           |                           |                     |                                        |                     |                        |                         |                   |     |
| IAT sensor                                          | ×                  |                             | ×                                     |                | ×                      |                   | ×                       | ×                              | ×           | ×                         | ×                         |                     |                                        |                     |                        |                         | ×                 |     |
| MAF sensor                                          |                    |                             | ×                                     | ×              | ×                      |                   |                         | ×                              |             | ×                         |                           |                     |                                        |                     |                        |                         |                   |     |
| A/F sensor                                          |                    |                             |                                       |                | ×                      |                   |                         |                                | ×           | ×                         |                           |                     | ×                                      |                     |                        |                         |                   |     |
| HO2S                                                |                    |                             |                                       |                | ×                      |                   |                         |                                |             | ×                         |                           |                     | ×                                      |                     |                        |                         |                   |     |
| Generator (Terminal P: stator coil)                 |                    |                             | ×                                     |                |                        |                   |                         | ×                              |             |                           |                           |                     |                                        |                     |                        |                         | ×                 |     |
| BARO sensor (built into PCM)                        |                    |                             | ×                                     | ×              | ×                      |                   | ×                       |                                | ×           | ×                         | ×                         |                     |                                        |                     |                        |                         |                   |     |
| Battery                                             |                    |                             | ×                                     |                | ×                      |                   | ×                       | ×                              |             |                           | ×                         | ×                   | ×                                      |                     |                        |                         | ×                 |     |
| Oil pressure sensor                                 | ×                  |                             |                                       |                |                        |                   |                         |                                |             |                           | ×                         | ×                   |                                        |                     |                        |                         |                   |     |
| PCM temperature sensor (built into PCM)             |                    |                             |                                       |                |                        |                   |                         |                                |             |                           |                           |                     |                                        | ×                   |                        |                         | ×                 |     |
| TP sensor No.1, No.2                                | ×                  |                             | ×                                     |                | ×                      |                   |                         | ×                              |             |                           |                           |                     |                                        | ×                   |                        |                         |                   |     |
| APP sensor No.1, No.2                               |                    |                             | ×                                     |                | ×                      |                   |                         |                                |             |                           |                           |                     |                                        |                     |                        |                         |                   |     |
| APV position sensor No.1,<br>No.2                   |                    |                             |                                       | ×              |                        |                   |                         |                                |             |                           |                           |                     |                                        |                     |                        |                         |                   |     |
| Eccentric shaft position sensor                     |                    |                             | ×                                     | ×              | ×                      | ×                 | ×                       | ×                              | ×           | ×                         | ×                         | ×                   | ×                                      | ×                   |                        |                         | ×                 |     |
| CPP switch (MT)                                     |                    |                             | ×                                     |                | ×                      |                   |                         | ×                              |             |                           |                           |                     |                                        | ×                   |                        |                         |                   |     |
| Neutral switch (MT)                                 |                    |                             | ×                                     |                | ×                      |                   |                         | ×                              |             |                           |                           |                     |                                        | ×                   |                        |                         | ×                 |     |
| Brake switch                                        |                    |                             | ×                                     |                | ×                      |                   |                         | ×                              |             |                           |                           |                     |                                        |                     |                        |                         | ×                 |     |
| Refrigerant pressure switch (middle)                |                    |                             | ×                                     |                |                        |                   |                         |                                |             |                           |                           |                     |                                        | ×                   | ×                      |                         |                   |     |
| A/C switch                                          |                    |                             | ×                                     |                | ×                      |                   |                         | ×                              |             |                           |                           |                     |                                        | ×                   | ×                      |                         |                   |     |
| Ignition switch                                     | ×                  | ×                           | ×                                     | ×              | ×                      | ×                 | ×                       |                                |             |                           | ×                         |                     |                                        |                     |                        |                         | ×                 |     |
| SSV switch                                          |                    |                             |                                       | ×              |                        |                   |                         |                                |             |                           |                           |                     |                                        |                     |                        |                         |                   |     |
| Cruise control switch                               |                    |                             | ×                                     |                |                        |                   |                         | ×                              |             |                           |                           |                     |                                        |                     |                        |                         |                   |     |
| CAN                                                 |                    |                             | ×                                     |                | ×                      |                   |                         | ×                              | ×           | ×                         |                           |                     |                                        | ×                   |                        | ×                       | ×                 | ×   |
| Output                                              |                    |                             |                                       |                |                        |                   |                         |                                |             |                           |                           |                     |                                        |                     |                        |                         |                   |     |
| Main relay                                          | ×                  | ļ ,.                        |                                       |                |                        |                   |                         |                                |             |                           |                           |                     |                                        |                     |                        |                         |                   |     |
| Drive-by-wire relay Throttle valve actuator         |                    | ×                           | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                |                        |                   |                         |                                | -           | -                         |                           | -                   |                                        | -                   | -                      |                         |                   |     |
| VDI solenoid valve (13B-                            |                    |                             | ×                                     |                |                        |                   |                         |                                | -           | -                         |                           |                     |                                        |                     |                        |                         |                   |     |
| MSP(high power))  VFAD solenoid valve (with         |                    |                             |                                       | ×              |                        |                   |                         |                                |             |                           |                           |                     |                                        |                     |                        |                         |                   |     |
| VFAD solenoid valve (with VFAD)  SSV solenoid valve | ļ<br>-             |                             |                                       | ×              |                        |                   |                         |                                |             |                           |                           |                     |                                        |                     |                        |                         |                   |     |
| 00 v soletiola valve                                |                    |                             |                                       | _ ^            |                        |                   |                         |                                |             |                           |                           |                     |                                        |                     |                        |                         |                   |     |

## 01-40

### **CONTROL SYSTEM [13B-MSP]**

| Item                                           | MAIN RELAY CONTROL | DRIVE-BY-WIRE RELAY CONTROL | DRIVE-BY-WIRE CONTROL | S-DAIS CONTROL | FUEL INJECTION CONTROL | FUEL PUMP CONTROL | FUEL PUMP SPEED CONTROL | ELECTRIC SPARK ADVANCE CONTROL | AIR CONTROL | EVAPORATIVE PURGE CONTROL | METERING OIL PUMP CONTROL | OIL PRESURE CONTROL | A/F SENSOR HEATER, HO2S HEATER CONTROL | A/C CUT-OFF CONTROL | ELECTRICAL FAN CONTROL | STARTER CUT-OFF CONTROL | GENERATOR CONTROL | CAN         |
|------------------------------------------------|--------------------|-----------------------------|-----------------------|----------------|------------------------|-------------------|-------------------------|--------------------------------|-------------|---------------------------|---------------------------|---------------------|----------------------------------------|---------------------|------------------------|-------------------------|-------------------|-------------|
| APV motor                                      |                    |                             |                       | ×              |                        |                   |                         |                                |             |                           |                           |                     |                                        |                     |                        |                         |                   |             |
| Fuel injector (FP, FS)                         |                    |                             |                       |                | ×                      |                   |                         |                                |             |                           |                           |                     |                                        |                     |                        |                         |                   |             |
| Fuel injector (RP, RS)                         |                    |                             |                       |                | ×                      |                   |                         |                                |             |                           |                           |                     |                                        |                     |                        |                         |                   |             |
| Fuel pump relay                                |                    |                             |                       |                |                        | ×                 |                         |                                |             |                           |                           |                     |                                        |                     |                        |                         |                   |             |
| Fuel pump speed control relay                  |                    |                             |                       |                |                        |                   | ×                       |                                |             |                           |                           |                     |                                        |                     |                        |                         |                   |             |
| Ignition coil (T/F, T/R)                       |                    |                             |                       |                |                        |                   |                         | ×                              |             |                           |                           |                     |                                        |                     |                        |                         |                   |             |
| Ignition coil (L/F,L/R)                        |                    |                             |                       |                |                        |                   |                         | ×                              |             |                           |                           |                     |                                        |                     |                        |                         |                   |             |
| Air solenoid valve                             |                    |                             |                       |                |                        |                   |                         |                                | ×           |                           |                           |                     |                                        |                     |                        |                         |                   |             |
| Air pump relay                                 |                    |                             |                       |                |                        |                   |                         |                                | ×           |                           |                           |                     |                                        |                     |                        |                         |                   |             |
| Purge solenoid valve                           |                    |                             |                       |                |                        |                   |                         |                                |             | ×                         |                           |                     |                                        |                     |                        |                         |                   |             |
| Metering oil pump driver                       |                    |                             |                       |                |                        |                   |                         |                                |             |                           | ×                         |                     |                                        |                     |                        |                         |                   |             |
| Metering oil pump No.1, No.2                   |                    |                             |                       |                |                        |                   |                         |                                |             |                           | ×                         |                     |                                        |                     |                        |                         |                   |             |
| OCV                                            |                    |                             |                       |                |                        |                   |                         |                                |             |                           |                           | ×                   |                                        |                     |                        |                         |                   |             |
| A/F sensor heater                              |                    |                             |                       |                |                        |                   |                         |                                |             |                           |                           |                     | ×                                      |                     |                        |                         |                   |             |
| HO2S heater                                    |                    |                             |                       |                |                        |                   |                         |                                |             |                           |                           |                     | ×                                      |                     |                        |                         |                   |             |
| A/C relay                                      |                    |                             |                       |                |                        |                   |                         |                                |             |                           |                           |                     |                                        | ×                   |                        |                         |                   | $\bigsqcup$ |
| Cooling fan relay No.1, No.2, No.3, No.4, No.5 |                    |                             |                       |                |                        |                   |                         |                                |             |                           |                           |                     |                                        |                     | ×                      |                         |                   |             |
| Starter relay                                  |                    |                             |                       |                |                        |                   |                         |                                |             |                           |                           |                     |                                        |                     |                        | ×                       |                   |             |
| Generator (terminal D: field coil)             |                    |                             |                       |                |                        |                   |                         |                                |             |                           |                           |                     |                                        |                     |                        |                         | ×                 |             |
| CAN                                            |                    |                             |                       |                |                        |                   |                         |                                |             |                           |                           |                     |                                        |                     |                        |                         |                   | ×           |

#### DRIVE-BY-WIRE RELAY CONTROL OPERATION [13B-MSP]

id0140g1170800

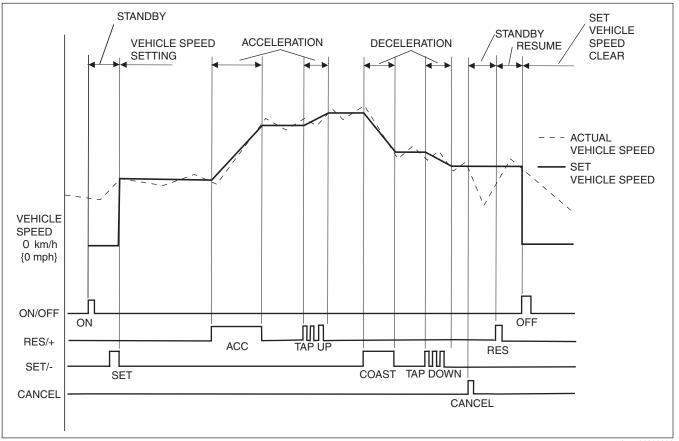
#### Idle Speed Control

- Controls the throttle valve opening angle so that it is close to the target idle speed calculated by the PCM.
- The PCM calculates the target throttle opening angle by adding each type of correction to the basic duty value which is the basis of the throttle valve opening angle, and then sends a duty signal to the throttle valve actuator. The basic duty value is determined by the target engine speed.
- Each type of correction is as follows.

#### Correction

| Correction                                              | Purpose                                                                                                                                                                                                                          | Condition                                                                                                                              | Amount of Correction                                                                                                                                                                                    |  |  |  |  |  |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Water temperature correction                            | Corrects changes in engine friction resistance based on changes in engine temperature.                                                                                                                                           | Determines correction amount based on ECT.                                                                                             | Correction amount decreases as ECT increases.                                                                                                                                                           |  |  |  |  |  |
| Correction at engine start                              | Prevents idle speed dropping off after engine start.                                                                                                                                                                             | Directly after cranking and engine-start.                                                                                              | Correction amount increases as ECT decreases.                                                                                                                                                           |  |  |  |  |  |
| Feedback correction                                     | Performs feedback control so that idle speed is close to the target idle speed.                                                                                                                                                  | Executes feedback conditions when all of the following conditions are met:     — Vehicle stopped — AP fully closed                     | <ul> <li>Correction amount decreases when the idle speed is higher than the target idle speed.</li> <li>Correction amount increases when the idle speed is lower than the target idle speed.</li> </ul> |  |  |  |  |  |
| Learning correction                                     | Corrects air flow amount changes from changes in the engine due to aged deterioration such as engine friction resistance and air leakage from the throttle valve.                                                                | Determined by the amount of feedback correction when external load correction and purge control stop.                                  | Learning correction executed when upper or lower limit of feedback correction exceeds the fixed value.                                                                                                  |  |  |  |  |  |
| Purge correction                                        | Increase in air from purge control is subtracted from the target throttle opening angle. Increases throttle valve opening angle to prevent rotation fluctuation from changes in air/fuel ratio when purge concentration is high. | Determined by the purge flow amount and purge concentration when purge control is executed.                                            | <ul> <li>Correction amount<br/>decreases as purge flow<br/>amount increases.</li> <li>Correction amount<br/>increases as purge flow<br/>concentration increases.</li> </ul>                             |  |  |  |  |  |
| Load correction when vehicle accelerates from idle (MT) | Prevents engine speed drop after vehicle accelerates from idle.                                                                                                                                                                  | At acceleration from idle                                                                                                              | The amount of correction increases as the idle speed depression amount increases.                                                                                                                       |  |  |  |  |  |
| External load correction                                | <ul> <li>Prevents engine speed drop when the A/C and electrical load are operating.</li> <li>Prevents engine speed revving when the A/C and electrical load are off.</li> </ul>                                                  | When any of the following signals are input:     — A/C switch     — Refrigerant pressure switch (middle)     — Generator current value | Correction amount increases as external load increases.                                                                                                                                                 |  |  |  |  |  |
| Fast idle up correction                                 | Rapidly activates the catalytic converter after cold-engine start.                                                                                                                                                               | Synchronizes fast idle correction for electric spark control.                                                                          | Correction amount increases as the ignition timing retard for the fast idling correction of the ignition timing control advances.                                                                       |  |  |  |  |  |
| Barometric pressure correction                          | Compensates air density variation caused by barometric pressure change.                                                                                                                                                          | Correction amount is determined according to barometric pressure.                                                                      | Correction amount increases as barometric pressure decreases.                                                                                                                                           |  |  |  |  |  |
| Intake air<br>temperature<br>correction                 | Compensates air density variation caused by intake air temperature change.                                                                                                                                                       | Correction amount is determined according to barometric pressure.                                                                      | Correction amount increases as intake air temperature increases.                                                                                                                                        |  |  |  |  |  |

#### **Accelerator Control**


- Controls the throttle valve opening angle through control of the throttle valve actuator, according to the amount of AP depression.
- The PCM controls the throttle valve actuator so that the actual throttle valve opening angle is close to the target throttle valve opening angle.
- The final throttle valve opening angle is determined by the sum of the target throttle opening angle during idling and the target throttle valve opening angle during regular driving.
- The target throttle valve opening angle during regular driving is determined based on the transmission gear position, the amount of AP depression and the engine speed.
- The PCM sets the throttle valve to the fully-closed position when the ignition switch is on or off and executes the idle position learning function to learn the throttle valve position. Due to this, changes in the throttle valve opening angle due to age deterioration are corrected.
- When the ignition switch is off, a main relay on request is output and the fully-closed learning function is executed.

#### **Traction Control**

• The PCM calculates the target throttle valve opening angle by the torque up/down request signal from the DSC HU/CM and TCM and the engine speed.

#### **Cruise Control**

- Calculates the throttle valve opening angle based on the deviation of the actual vehicle speed from the set vehicle speed which was set with the cruise control switch and sends a duty signal to the throttle valve actuator.
- The PCM controls the actual vehicle speed so that it is close to the set vehicle speed.



ar8uun00000229

The cruise control includes the cruise control operation condition and the cruise control stop condition.

#### Cruise control operation condition

- When all of the following conditions are met, execution of the cruise control system is enabled (cruise control standby status).
  - Cruise control main switch: ON
  - Vehicle speed: Exceeds 27 km/h {17 mph}

#### Cruise control stop condition

- When any of the following conditions are met even while in cruise control, the PCM stops the cruise control and clears the set vehicle speed.
  - Ignition switch: OFF
  - Cruise control main switch: OFF
  - Cruise control related DTCs (P0564, P0571) detected
- When any of the following conditions are met even while in cruise control, the PCM stops the cruise control
  while storing the set vehicle speed.
  - Cancel switch: ON
  - Neutral switch (MT) or CPP switch (MT): ON
  - Inhibitor switch (AT) P/N position switch: ON
  - Vehicle speed: Less than 22.5 km/h {14.0 mph}
  - Brake switch: ON
  - The actual vehicle speed is 15 km/h {9.3 mph} or more lower than the set vehicle speed during cruise control (ascending).
  - Condition where actual vehicle speed is 15 km/h {9.3 mph} or more lower than the set vehicle speed continues for 60 s or more even when the RES (+) switch is on.

#### Cruise control function

• The cruise control includes accelerating, coasting, resume, tap-down, tap-up and downshift functions (AT).

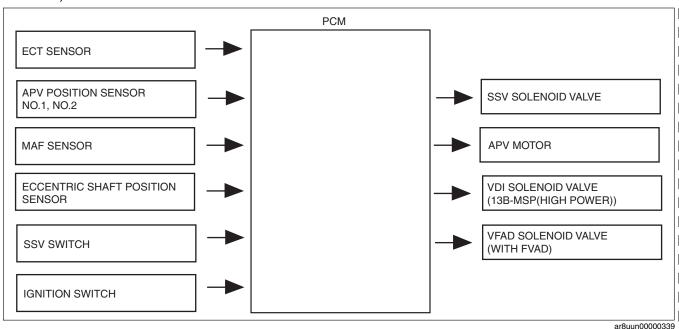
## 2009 Mazda RX-8 Service Highlights (3452–1U–08C) CONTROL SYSTEM [13B-MSP]

#### **Function List**

| Function       | Contents                                                                                                                                                                                                                                                                                                                                                         |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accelerating   | When any of the following conditions are met while driving in cruise control and when the RES (+) switch is continuously pressed, the PCM gradually increases the set vehicle speed.      Except during resume operation      The RES (+) switch is on one time or more during resume operation.                                                                 |
| Coasting       | When the SET (-) switch is continuously pressed, the PCM gradually decreases the set vehicle speed.                                                                                                                                                                                                                                                              |
| Resume         | When the RES (+) switch signal is input to the PCM during regular driving (cruise control is stopped) and the previously set vehicle speed is stored in the PCM, the PCM sets the set vehicle speed to the previously set vehicle speed and begins control.                                                                                                      |
| Tap down       | When all of the following conditions are met while driving in cruise control, the PCM decreases the set vehicle speed by 1.6 km/h {0.99 mph} and controls the throttle valve actuator.  — During cruise control  — RES (+) switch off  — The RES (+) switch switches from off to on  — When actual vehicle speed is lower (set vehicle speed –2 km/h {-1.2 mph}) |
| Тар-ир         | When all of the following conditions are met, the PCM increases the set vehicle speed by 1.6 km/h {0.99 mph} and controls the throttle valve actuator so that the vehicle speed is close to the set vehicle speed.  — During cruise control  — The RES (+) switch switches from off to on                                                                        |
| Downshift (AT) | When the following conditions are met, a downshift signal is sent to the TCM via CAN.     — RES (+) switch on     — Target vehicle acceleration is not reached                                                                                                                                                                                                   |

#### **Vehicle Speed Limiter (AT)**

• When the actual vehicle speed exceeds 200 km/h {124 mph}, the vehicle speed limiter controls the throttle valve actuator so that vehicle speed is maintained at 200 km/h {124 mph} or less. It also reduces shock when the vehicle speed reaches 200 km/h {124 mph} and prevents rapid temperature increase of the catalytic converter during high speed.


#### SEQUENTIAL DYNAMIC AIR INTAKE SYSTEM (S-DAIS) CONTROL OUTLINE [13B-MSP]

i<u>d0140g1</u>304000

 Operates the SSV solenoid valve, the APV motor, the VDI solenoid valve (13B-MSP (high power)), and the VFAD solenoid valve (with VFAD) according to the engine speed range. As a result, torque and output at all engine speed ranges have been improved.

#### SEQUENTIAL DYNAMIC AIR INTAKE SYSTEM (S-DAIS) CONTROL BLOCK DIAGRAM [13B-MSP]

 The PCM determines the engine conditions based on each input signal and sends signals to the SSV solenoid valve, the APV motor, the VDI solenoid valve (13B-MSP (high power)), and the VFAD solenoid valve (with VFAD).



#### 2009 Mazda RX-8 Service Highlights (3452-1U-08C) CONTROL SYSTEM [13B-MSP]

#### SEQUENTIAL DYNAMIC AIR INTAKE SYSTEM (S-DAIS) CONTROL OPERATION [13B-MSP]

id0140g1304200

Operation Outline

 Operates the SSV solenoid valve, the APV motor, the VFAD solenoid valve (with VFAD), and the VDI solenoid valve according to the engine speed range.

#### **Operation list**

#### Engine speed range and operation conditions for each valve

On: Energization, Off: Non-energization, Open: Valve opens, Closed: Valve closes

|      | Item           | Engine speed range |                                          |            |                                |  |  |  |  |  |  |  |
|------|----------------|--------------------|------------------------------------------|------------|--------------------------------|--|--|--|--|--|--|--|
|      | iteiii         | Low speed          | igh speed                                | High speed |                                |  |  |  |  |  |  |  |
| SSV  | Solenoid valve | OFF                | OFF ON (Secondary injector is operating) |            |                                |  |  |  |  |  |  |  |
| 334  | Valve          | Closed             | en                                       |            |                                |  |  |  |  |  |  |  |
| VFAD | Solenoid valve | Ol                 | FF                                       | ON         | ON (Approx. 5,250 rpm or more) |  |  |  |  |  |  |  |
| VIAD | Valve          | Clo                | sed                                      | Open       |                                |  |  |  |  |  |  |  |
| APV  | Motor          |                    | OFF                                      | •          | ON (Approx. 6,250 rpm or more) |  |  |  |  |  |  |  |
| AFV  | Valve          |                    |                                          | Open       |                                |  |  |  |  |  |  |  |
| VDI  | Solenoid valve |                    |                                          | ON         |                                |  |  |  |  |  |  |  |
| VDI  | Valve          |                    | Open                                     |            |                                |  |  |  |  |  |  |  |

#### Operation

#### SSV solenoid valve

 Turns on at the same time as the injection timing of the secondary injector. Due to this, the intake manifold vacuum is fed to the SSV actuator allowing intake air from secondary port which is opened by the SSV valve.

- VFAD solenoid valve (with VFAD)

   At an engine speed of less than 5,250 rpm, the VFAD solenoid valve turns off and feeds intake manifold vacuum to the actuator (valve closes).
  - At an engine speed of 5,250 rpm or more, the VFAD solenoid valve turns on and feeds BARO to the actuator (valve opens).

#### APV motor

 When the following conditions are met, a duty signal is sent to the APV motor, the APV gradually opens. If an APV-open condition is not met, a minus duty signal is sent to the APV motor, reversing the motor and closing the APV.

#### **APV-open condition**

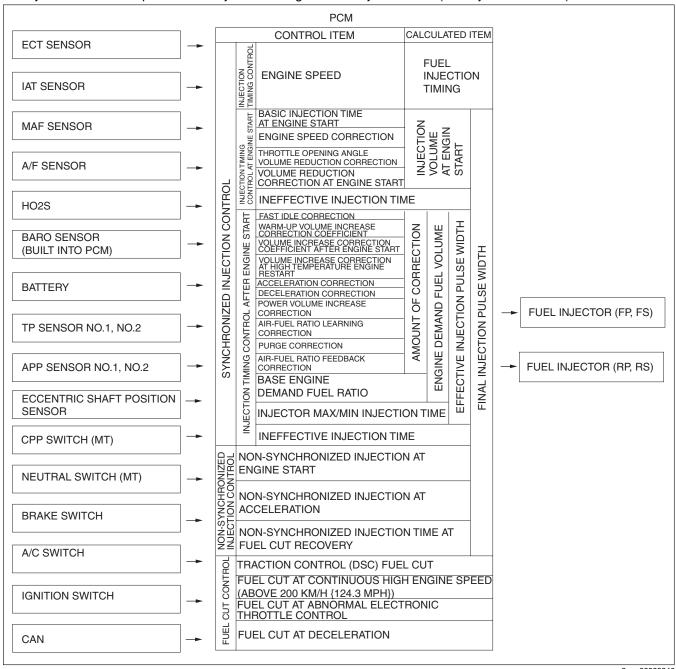
- Engine speed: 6,250 rpm or more
- ECT: Approx. 70 °C {158 °F} or more

#### VDI solenoid valve (13B-MSP (high power))

 At an engine speed of 7,650 rpm or more, the VDI solenoid valve turns off and feeds intake manifold vacuum to the actuator (valve opens).

#### **FUEL INJECTION CONTROL OUTLINE [13B-MSP]**

id0140g1101700


- The fuel injection control includes the following:
  - synchronized injection control, which performs fuel injection at the rotor intake stroke according to designated timing.
  - non-synchronized injection control, which performs fuel injection only when fuel injection conditions are met regardless of rotor intake stroke.
  - Fuel cut control, which temporarily stops fuel injection.
- There are primary, secondary fuel injectors, and the injection timing and injection amount varies according to the engine speed range. Due to this, the optimum amount of fuel injection is controlled at all ranges.

01-40

#### FUEL INJECTION CONTROL BLOCK DIAGRAM [13B-MSP]

id0140g1101800

 The PCM determines the engine operation conditions based on input signals and operates the injectors to inject fuel with the optimum fuel injection timing and fuel injection time (fuel injection amount).



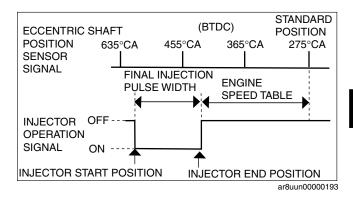
ar8uun00000340

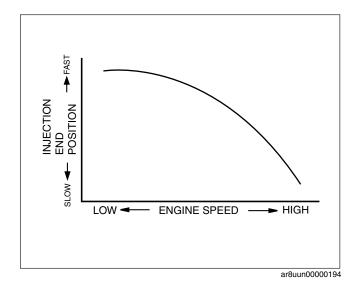
#### **FUEL INJECTION CONTROL OPERATION [13B-MSP]**

id0140g1101900

#### **Fuel Injection Timing**

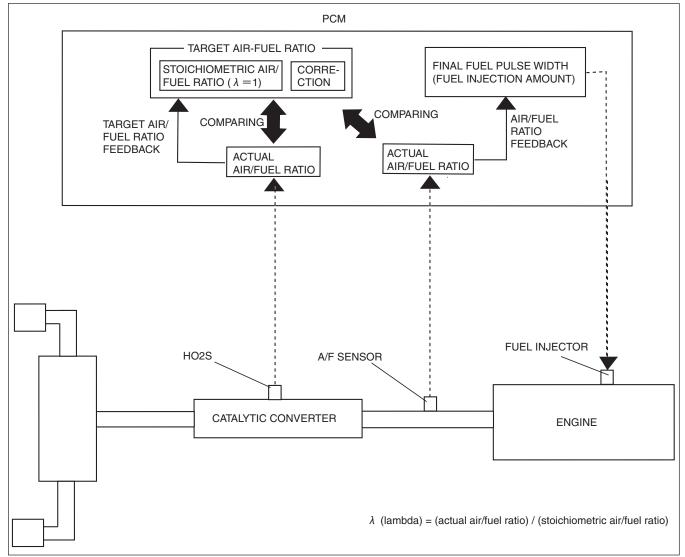
- The PCM calculates the optimum fuel injection timing according to the engine operation conditions and operates the injectors.
- The fuel injection timing is controlled at engine start and after engine start.
- At engine start (engine speed is within 500 rpm), fuel injection timing control at engine start is performed and after determining that the engine has started (engine speed is 500 rpm or more), injection timing control after engine start is performed.


#### Fuel injection timing at engine start


The injection timing at engine start operates for a period until engine start has been determined and injects at BTDC 455°CA (crank angle position).

#### Fuel injection timing after engine start

- The injection start position of the fuel injection timing after engine start is determined by the injection end position and the final injection pulse width (injection time).
- The injection start position is calculated by: (Injection start position = BTDC 275°CA + Injection end position + Final injection pulse width).
- The injection end position is determined by the engine speed. (The higher the engine speed the lower the fuel injection timing.)

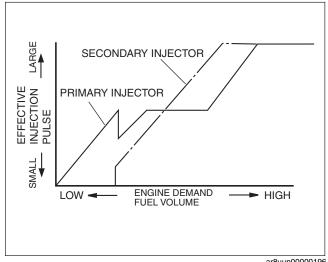

#### **Engine speed table**





#### Air/fuel Ratio Control

- Controls the fuel injection amount so that the actual air/fuel ratio is close to the target air/fuel ratio, to boost purification of the catalytic converter.
- air/fuel ratio feedback and target air/fuel ratio feedback are adopted for precise control of the air/fuel ratio.
- The air/fuel ratio feedback compares the air/fuel ratio in the exhaust manifold detected by the A/F sensor and the target air/fuel, and feeds back the air/fuel ratio difference to the final fuel pulse width (fuel injection amount).
- The target air/fuel ratio feedback compares the air/fuel ratio in the catalytic converter detected by the HO2S with the target air/fuel ratio and feeds back the air/fuel ratio difference to the stoichiometric air/fuel ratio (λ = 1). Due to this, the optimum target air/fuel ratio is determined.
- Repeats feedback to the target air/fuel ratio and final fuel pulse width (fuel injection amount), and by constantly
  calculating the optimum target air/fuel ratio and final fuel pulse width, purification of the catalytic converter at a
  high level has been achieved.




ar8uun00000195

#### 01-40

#### **Fuel Injection Distribution Control**

- There are primary, secondary injectors, and they independently control fuel injection amount and timing according to the amount of fuel demand from the engine.
- The amount of fuel demand from the engine is determined by each correction of the charging efficiency and injection time after engine start.
- When the amount of fuel demand from the engine is low, only the primary injectors inject fuel. When the amount of fuel demand from the engine increases, fuel injection in the order of secondary injector begin injection.



#### ar8uun00000196

#### Synchronized Injection Control

- The synchronized injection control performs fuel injection according to each timing that has been determined by the intake stroke of the rotors.
- The synchronized injection control includes fuel injection control at engine start and fuel injection control after engine start. Synchronized injection control performs fuel injection based on injection time (final injection pulse width) and fuel injection timing demanded by each rotor.

#### Injection time at start

- Calculated by adding the engine speed correction to the basic injection time at engine start, the throttle valve opening angle correction, and the volume decrease correction at engine start, and then the final injection pulse width is calculated by adding the ineffective injection time to the injection time at engine start.
- Basic injection time at engine start is determined based on ECT and shortens as the ECT increases.
- Ineffective injection time is determined according to battery voltage and lengthens as battery voltage becomes lower.

| Correction                                 | Condition                                                                   | Amount of Correction                                                                                                                                                                                                                              |
|--------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Engine speed correction                    | Determines correction amount based on engine speed.                         | Correction amount lengthens as the engine speed increases.                                                                                                                                                                                        |
| Throttle valve opening angle correction    | Determines correction amount based on throttle valve opening angle.         | Correction amount shortens as the throttle valve opening angle increases.                                                                                                                                                                         |
| Volume decrease correction at engine start | Determines correction amount based on ECT and engine speed at engine start. | After starter is on for approx. 1 s and any one of the following conditions are met, injection time gradually decreases:     ECT at fixed value or more     Engine speed at target engine speed or more     Approx. 30 s of cranking time elapsed |

#### Injection time after engine start

 The injection time after engine start is calculated from the charging efficiency, ineffective injection time and each type of correction.

#### Charging efficiency

The charging efficiency is the ratio of intake air amount that is actually taken in relation to the maximum air charging amount (mass) of the operation chamber. This value becomes larger in proportion to the increase in engine load.

#### Ineffective injection time

Ineffective injection time at engine start is determined according to the battery voltage and lengthens as the battery voltage becomes lower.

#### Each type of correction

Includes the following corrections:

#### Fast idle correction

• Determines the correction amount when the secondary air injection system operates to rapidly heat the catalytic converter. The correction amount is determined by estimating the air amount that is sent from the secondary air injection pump based on the BARO, battery positive voltage, IAT, charging efficiency and the engine speed, and by calculating the target air/fuel ratio.

#### Warm-up volume increase correction coefficient

At cold-engine start, warm-up is accelerated by advanced vaporization and atomization. The warm-up
volume increase correction coefficient is determined by the ECT, water temperature at engine start,
charging efficiency, and the engine speed.

#### Volume increase correction coefficient after start coefficient

• The volume increase correction coefficient after engine start coefficient is determined by the ECT and IAT at engine start, the time elapsed, and fuel-cut conditions after engine start.

#### High temperature volume increase correction at engine restart

 At high temperature engine restart, increased fuel volume correction is performed to prevent fluctuations in idle speed based on the occurrence of vapor in the fuel pipe. The correction amount is determined by the IAT and the ECT.

#### **Acceleration correction**

 Improves engine response during acceleration. The correction amount is determined by the rate of charging efficiency increase, throttle valve opening angle, engine speed, volume increase after engine start, time after engine start, and the ECT.

#### **Deceleration correction**

• Stops afterburn within the ranges fuel cut does not operate during deceleration. The correction amount is determined by the rate of charging efficiency decrease, throttle valve opening angle, engine speed, volume increase after engine start, time after engine start, and the ECT.

#### **Power increase correction**

Volume increase correction is performed to improve output during high load and to inhibit overheating of
the catalytic converter. The correction amount is determined by the throttle opening angle, charging
efficiency, engine speed, volume increase after engine start, ECT, gear position (MT: determined by
engine speed and vehicle speed, AT: determined by signal from the TCM), and BARO.

#### **Fuel learning correction**

Learns the difference between the target air/fuel ratio and the actual air/fuel ratio (A/F sensor).

#### **Purge correction**

Performs volume decrease correction of the fuel amount for the portion of evaporative fuel inflowing
from the charcoal canister. The correction amount is determined by calculating the fuel amount
inflowing from the charcoal canister caused by the amount of change in air/fuel ratio feedback during
activation of the evaporative purge control.

#### **Fuel feedback correction**

- Detects the air/fuel ratio in the exhaust manifold at the A/F sensor and feeds back to the final injection pulse width (final fuel injection amount).
- Fuel feedback begins when all of the following conditions are met:

ECT is 32°C {90°F} or more.

After the engine has started and 3—100 s have elapsed (time period after engine-start lengthens as ECT becomes lower).

- -Power volume increase correction
- -During fuel cut recovery, non synchronized injection control stops.
- -Traction correction retard stops.
- -Fast idle correction stops.
- -During activation of A/F sensor.

#### **Non-synchronized Injection Control**

- The non-synchronized injection control allows fuel injection when fuel injection conditions are met, regardless of the position of the eccentric shaft.
- The non-synchronized injection control includes non-synchronized injection control at engine start, acceleration, idle, and fuel cut recovery.

| Control name                                            | Purpose                                                                                                             | Injection condition                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Non-synchronized injection control at engine start      | Improves engine startability.                                                                                       | <ul> <li>Performs non-synchronized fuel injection at engine start until determining the engine has been started (engine speed 500 rpm or more).</li> <li>Injection pulse width at engine start is calculated by adding the injection amount at engine start calculated from the following signals to the ineffective injection time:         <ul> <li>ECT</li> <li>Throttle valve opening angle</li> </ul> </li> </ul> |
| Non-synchronized injection control at acceleration      | Prevents acceleration hesitation and lean air/fuel ratio due to delay of fuel injection during sudden acceleration. | <ul> <li>Performs non-synchronized fuel injection when the amount of throttle valve change is at the fixed value or more for both rotors simultaneously.</li> <li>Injection pulse width is calculated from the following signals:         <ul> <li>Charging efficiency</li> <li>Throttle valve opening angle</li> <li>Engine speed</li> <li>ECT</li> </ul> </li> </ul>                                                 |
| Non-synchronized injection control at fuel cut recovery | Prevents engine hesitation and lean air/fuel ratio due to the delay of fuel injection during fuel cut recovery.     | Performs non-synchronized fuel injection during fuel cut recovery.     Injection time is determined by ECT.                                                                                                                                                                                                                                                                                                            |

#### **Fuel Cut Control**

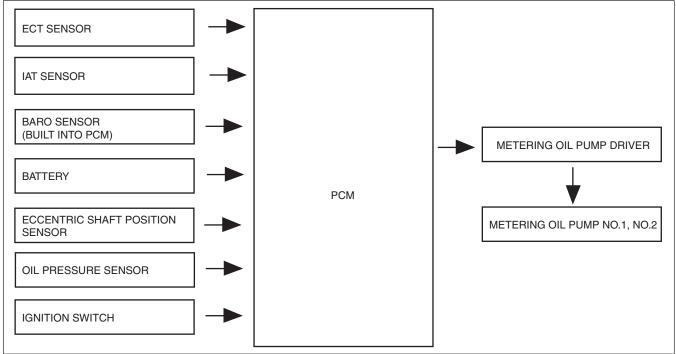
- The fuel cut control stops fuel injection when the fuel cut conditions are met.
- The fuel cut control includes traction fuel cut control, continuous fuel cut control during high engine speed, fuel cut control during drive-by-wire abnormality, fuel cut control during deceleration, dechoke control, and excessive speed fuel cut control.

#### Note

- AT vehicles: If the engine speed reaches the excessive speed fuel cut condition with the shift lever in the M range, fuel cut and supply occur repeatedly to warn the driver that the engine speed is too high.
   Moreover, if the engine speed is not lowered, the engine speed is lowered by a forced shift up of the gear to protect the engine.
- MT vehicles: If the engine speed reaches the excessive speed fuel cut condition, the fuel is cut to protect
  the engine. Moreover, if the engine speed is not lowered, fuel cut and supply occur repeatedly to warn the
  driver that the engine speed is too high.

| Control name                                               | Purpose                                                                                                                                                  | Fuel cut condition                                                                                                                                                       |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Traction fuel cut control                                  | Lowers engine torque based on the torque down request from DSC HU/CM and TCM (AT).                                                                       | Performs fuel cut based on torque down request from DSC HU/CM and TCM (AT).                                                                                              |
| Continuous speed fuel cut control during high engine speed | Prevents overheating of the catalytic converter.                                                                                                         | Performs fuel cut during continuous high engine speed while vehicle is stopped.                                                                                          |
| Fuel cut control during drive-by-wire abnormality          | When there is a malfunction in the drive-by-<br>wire, fuel cut is activated and excess increase<br>in engine speed is prevented.                         | Fuel cut is performed in case of a drive-by-wire control malfunction which may lead to a sudden increase in engine speed.                                                |
| Fuel cut control during deceleration                       | Prevents overheating of the catalytic converter due to misfire for improved fuel economy. Performs fuel cut on one rotor for reduced deceleration shock. | Performs fuel cut on one rotor when the throttle valve is open during deceleration. Performs fuel cut on both front and rear rotors when throttle valve is fully closed. |
| Dechoke control                                            | Scavenges operation chambers to improve engine startability if the spark plugs are smoldered.                                                            | Dechoke control is performed when the throttle valve opening angle is 50 degrees or more at engine start.                                                                |

| Control name                     | Purpose                             | Fuel cut condition                                                                                                                                                  |
|----------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Excessive speed fuel cut control | Prevents overheating of the engine. | When ECT is less than 40 °C {104 °F}: the engine speed is 5,000 rpm or more.  Standard power                                                                        |
|                                  |                                     | <ul> <li>When ECT is 40 °C {104 °F} or more: the engine speed is 6,500 rpm or more.</li> <li>When engine speed is 7,500 rpm or more.</li> <li>High power</li> </ul> |
|                                  |                                     | <ul> <li>When ECT is 40 °C {104 °F} or more: the engine speed is 7,000 rpm or more.</li> <li>When engine speed is 9,000 rpm or more.</li> </ul>                     |


#### **METERING OIL PUMP CONTROL OUTLINE [13B-MSP]**

id0140g1304500

- The PCM operates metering oil pumps No.1 and No.2 by operating the metering oil pump driver according to the engine operation conditions.
- The metering oil pump driver receives drive signals from the PCM to switch the internal ground and supply battery voltage to metering oil pumps No.1 and No.2.
- The PCM determines the engine operation conditions based on the signals from the input parts and controls
  the metering oil pump driver at the optimal timing to operate the metering oil pump. For the construction/
  operation of metering oil pumps No.1 and No.2, refer to "LUBRICATION SYSTEM, METERING OIL PUMP,
  CONSTRUCTION/OPERATION. (See 01-11-5 METERING OIL PUMPCONSTRUCTION/OPERATION [13B-MSP].)

#### METERING OIL PUMP CONTROL BLOCK DIAGRAM [13B-MSP]

id0140g1304400



ar8uun00000364

#### METERING OIL PUMP CONTROL OPERATION [13B-MSP]

id0140g1304300

#### Outline

• The PCM moves the plunger in metering oil pumps No.1 and No.2 to discharge the engine oil by controlling the metering oil pump driver. Two types of metering oil pumps are utilized separately and the discharge amount is adjusted based on the stroke intervals of the plunger to realize precise control of the flow amount according to engine demand.

#### Operation timing

 The PCM calculates the oil level required by the engine according to the engine operation conditions. When the calculated value reaches the discharge amount, a drive signal is sent to the metering oil pump driver and the metering oil pump operates (ON/OFF) to discharge oil.

#### **Demand-oil amount**

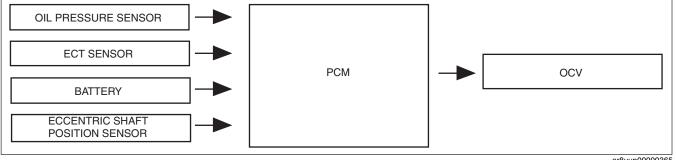
- The demand-oil amount is determined for metering oil pumps No.1 and No.2 respectively.
- The base flow amount, based on engine speed and engine load, is compared with the minimum flow amount, based on the engine coolant temperature and intake air temperature, and the larger of the two values is selected as the demand-oil amount.

#### Discharge amount

- The discharge amount is the oil amount injected from the center oil nozzle and side oil nozzles when metering oil pump No.1 or No.2 operates once.
- The discharge amount is corrected according to battery positive voltage, the metering oil pump internal pressure, and engine coolant temperature.

#### Ignition switch off function

- Engine startability at cold temperatures is improved by discharging engine oil while the ignition is switched off.
- If the engine is started with the coolant temperature lower than 20 °C (68 °F) and the ignition is switched off with the coolant temperature lower than 60 °C {140 °F}, the PCM calculates the necessary oil amount based on the coolant temperature. The PCM controls the metering oil pump driver until the engine rotation is completely stopped.


#### OIL PRESSURE CONTROL OUTLINE [13B-MSP]

id0140g1304600

- The amount of oil supplied to the metering oil pump is adjusted based on the engine operation conditions to keep the oil pressure inside the metering oil pump constant.
- Based on the input signals from the oil pressure sensor, the PCM drives the OCV and switches the oil passages of the metering oil pump so that the oil pressure inside the metering oil pump is kept constant.

#### OIL PRESSURE CONTROL BLOCK DIAGRAM [13B-MSP]

id0140a1304700



ar8uun00000365

#### OIL PRESSURE CONTROL OPERATION [13B-MSP]

id0140g1304800

 The PCM divides the oil control valve drive range into four modes according to the engine operation conditions and controls the target current for each control zone.

#### **Engine start mode**

 This mode opens the passage between the OCV and metering oil pump to feed oil into the metering oil pump at an early stage. After oil-feed into the metering oil pump is detected based on the input signals from the oil pressure sensor, the mode changes to the feedback mode.

#### Feedback mode

• The PCM controls the OCV target current so that the actual oil pressure in the metering oil pump is close to the target value determined according to the engine operation conditions.

#### Cleaning mode

- If any of the following conditions are met, this mode is executed to remove foreign material in the OCV oil
  passages:
  - Engine start mode is completed.
  - The oil pressure input from the oil pressure sensor remains at a certain value or more after a specified time has elapsed since the engine was started.

#### Operation

- The OCV alternately controls the target current between low and high levels at certain intervals. After repeating this operation several times, foreign material that has penetrated the OCV is removed and the cleaning mode is completed.
- The oil pressure input from the oil pressure sensor remains at a certain value or less after a specified time has elapsed since the engine was started.

#### Operation

 Because there may be an oil leakage concern from the pipes, the passage between the OCV and metering oil pump is closed so that oil-feed into the metering oil pump stops.

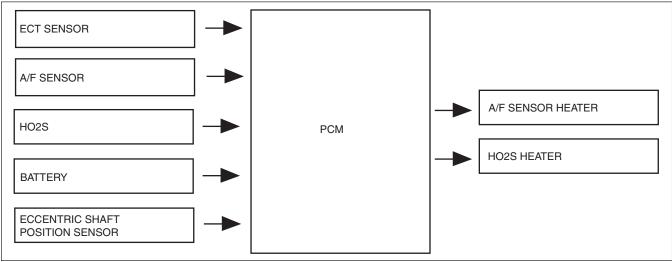
#### Periodic cleaning mode

• This mode performs at specified time intervals to remove foreign material in the OCV oil passages. (except during high engine speed, high engine load)

#### Operation

The OCV controls the target current on the lower side for a specified period of time. After executing this
operation one time, foreign material penetrating the OCV is removed and the periodic cleaning mode is
completed.

## AIR FUEL RATIO (A/F) SENSOR, HEATED OXYGEN SENSOR (HO2S) HEATER CONTROL OUTLINE [13B-MSP]


id0140g178200

- Stabilized oxygen concentrations, even when the exhaust gas temperature is low, are detected by controlling of the A/F sensor and HO2S, enabling feedback control of the fuel injection control even during cold-engine starting, improving emission performance when cold.
- When the exhaust gas temperature is high, the A/F sensor and HO2S is protected from sharp rises in its temperature by stopping energization to the A/F sensor heater and HO2S heater.
- Emission performance improvement and protection of the A/F sensor and HO2S have both been achieved by the duty control of the A/F sensor and HO2S according to the engine operation conditions (exhaust gas temperature).

## AIR FUEL RATIO (A/F) SENSOR, HEATED OXYGEN SENSOR (HO2S) HEATER CONTROL BLOCK DIAGRAM [13B-MSP]

id0140g1782100

• The PCM determines the engine conditions based on input signals and sends an operation signal to the A/F sensor or HO2S.



ar8uun00000215

## AIR FUEL RATIO (A/F) SENSOR, HEATED OXYGEN SENSOR (HO2S) HEATER CONTROL OPERATION [13B-MSP]

id0140q1782200

#### **Operation Conditions**

The PCM operates the A/F sensor or HO2S heater when the following conditions are met.

#### A/F sensor heater

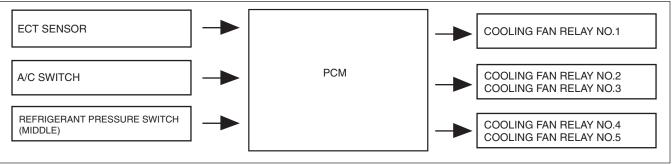
- After engine start
- After the engine has started and a fixed period of time has elapsed (the elapsed time period after the engine starts is determined by ECT).
- ECT is 5°C {41°F} or more.
- Battery positive voltage is 9 V or more and less than 16 V.
- MAF sensor is normal (no DTC is stored in PCM).
- The PCM outputs a duty signal.
- The element temperature is measured by the impedance of the A/F sensor and a duty ratio is determined.

01-40

#### **HO2S** heater

- Starter is off
- · After engine start
- After the engine has started and a fixed period of time has elapsed (the time period after the engine starts lengthens if the ECT falls below 0°C {32°F}.
- ECT is 10°C {50°F} or more.
- Battery positive voltage is 9 V or more and less than 16 V.
- Charging efficiency is the fixed value or less, or during fuel cut.
- The PCM outputs a duty signal. However the duty signal is either 100% or 0%.

#### **ELECTRICAL FAN CONTROL OUTLINE [13B-MSP]**


id0140g1103800

- Cooling fan relays No.1, No.2/ No.3, No.4/ No.5 turn on and off to control operation timing and rotation speed of
  the cooling fan motor according to the engine conditions. Due to this, the radiator and condenser are cooled
  efficiently, preventing overheating and overcooling.
- The electrical fan control includes the regular-driving cooling function and the after-cooling function.
- The regular-driving cooling function operates according to the engine conditions during the engine operation.
- The after-cooling function operates when the vehicle has stopped at high engine temperature (ignition switch
  off).
- After the ignition switch is turned off, a main relay on request is sent to operate the after-cooling function.

#### **ELECTRICAL FAN CONTROL BLOCK DIAGRAM [13B-MSP]**

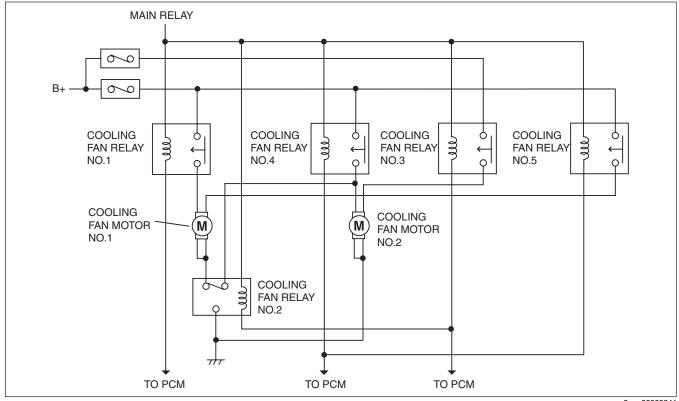
d0140g1103900

• The PCM determines the engine conditions based on input signals and sends an on/off signal to cooling fan relay No.1 or No.2/No.3 or No.4/No.5.



ar8uun00000201

#### **ELECTRICAL FAN CONTROL OPERATION [13B-MSP]**


id0140g1104000

- When the operation conditions are met for each function, the PCM sends an operation signal to cooling fan relay No.1 or No.2/No.3 or No.4/No.5 to operate the cooling fan motors.
- The rotation speed of the cooling fan motor is switched between three levels according to a combination of the cooling fan relays.
- The cooling fan rotates at low speed when only cooling fan relay No.1 is on, at middle speed when cooling fans, in addition to No.1, No.2 and No.3 are on, and at high speed when cooling fans No.4 and No.5 turn on.

#### **Operation condition**

| Function Cooling fan mo       |                             | fan motor                   | Cooling fan relay |           |           | Operation condition                                                                                                                                                                                                         |  |
|-------------------------------|-----------------------------|-----------------------------|-------------------|-----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Function                      | No.1                        | No.2                        | No.1              | No.2/No.3 | No.4/No.5 | Operation condition                                                                                                                                                                                                         |  |
|                               | Stop                        | Stop                        | OFF               | OFF       | OFF       | ECT less than 97 °C {207 °F} and A/C<br>switch OFF                                                                                                                                                                          |  |
|                               | Low speed rotation          | Low speed rotation          | ON                | OFF       | OFF       | <ul> <li>ECT less than 97 °C {207 °F} and A/C switch ON (Refrigerant pressure switch OFF)</li> <li>ECT is 97—101 °C {207—213 °F} and Refrigerant pressure switch OFF</li> </ul>                                             |  |
| Regular<br>driving<br>cooling | Middle<br>speed<br>rotation | Middle<br>speed<br>rotation | ON                | ON        | OFF       | <ul> <li>ECT is 101—108 °C {214—226 °F}</li> <li>ECT less than 101 °C {214 °F} and Refrigerant pressure switch ON</li> <li>ECT or above 108 °C {226 °F} and A/C switch ON (Refrigerant pressure switch OFF)</li> </ul>      |  |
|                               | High speed rotation         | High speed rotation         | ON                | ON        | ON        | <ul> <li>ECT or above 108 °C {226 °F} and A/C switch OFF</li> <li>ECT or above 108 °C {226 °F} and Refrigerant pressure switch ON</li> </ul>                                                                                |  |
| After cooling                 | Middle<br>speed<br>rotation | Middle<br>speed<br>rotation | ON                | ON        | OFF       | When all the following conditions are met:  Ignition switch: OFF Drive-by-wire relay: OFF Metering oil pump: Other than during ignition switch off mode Engine compartment temperature high or ECT 110 °C {230 °F} or more. |  |
| Forced drive                  | High speed rotation         | High speed rotation         | ON                | ON        | ON        | During test mode (during test mode with M-MDS) when the AP is depressed.                                                                                                                                                    |  |
| Fail safe                     | High speed rotation         | High speed rotation         | ON                | ON        | ON        | When a failure occurs in the ECT sensor.                                                                                                                                                                                    |  |

## Wiring diagram

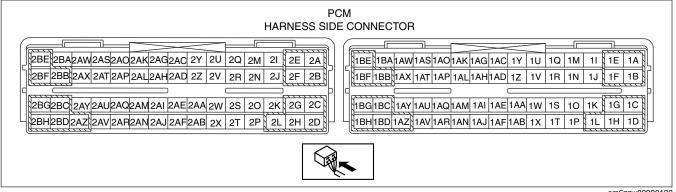


ar8uun00000341

id0140g1105300

#### PCM FUNCTION [13B-MSP]

#### **Function List**


The control descriptions are as shown below.

| Function                                                 | Description                                                                                                                                                              |  |  |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Main relay control                                       | Turns on the main relay according to requests from the controls, even when the ignition switch is off.                                                                   |  |  |  |
| Drive-by-wire control                                    | Controls the drive-by-wire actuator to obtain the optimum throttle valve opening angle according to the engine operation conditions.                                     |  |  |  |
| Drive-by-wire relay control                              | Controls the drive-by-wire relay according to the ignition switch signal.                                                                                                |  |  |  |
| Sequential dynamic air intake<br>system (S-DAIS) control | Controls the VFAD solenoid valve (with VFAD), SSV solenoid valve, VDI solenoid valve (13B-MSP(high power)), and APV motor according to the engine speed condition.       |  |  |  |
| Fuel injection control                                   | Calculates the optimum fuel injection amount according to the engine conditions, and controls injection time and injection timing of the injector.                       |  |  |  |
| Fuel pump control                                        | Controls the fuel pump relay according to the eccentric shaft position sensor signal.                                                                                    |  |  |  |
| Fuel pump speed control                                  | Controls fuel pump speed control relay according to the fuel amount required by the engine.                                                                              |  |  |  |
| Ignition timing control                                  | Controls timing of the energization applied to the ignition coils according to the engine conditions.                                                                    |  |  |  |
| Secondary air injection control                          | Controls the secondary air injection solenoid valve and secondary air injection pump relay at startup with the cold engine.                                              |  |  |  |
| Evaporative purge control                                | Controls the purge solenoid valve according to the driving condition.                                                                                                    |  |  |  |
| Metering oil pump control                                | The metering oil pump driver receives drive signals from the PCM to switch the internal ground and supply battery voltage to metering oil pumps No.1 and No.2.           |  |  |  |
| Oil pressure control                                     | The amount of oil supplied to the metering oil pump is adjusted based on the engine operation conditions to keep the oil pressure inside the metering oil pump constant. |  |  |  |
| A/F sensor heater/ HO2S heater control                   | Controls the A/F sensor heater and HO2S heater when cold.                                                                                                                |  |  |  |
| A/C cut-off control                                      | Controls the A/C relay according to the driving condition.                                                                                                               |  |  |  |
| Electrical fan control                                   | Controls the cooling fan relays No.1 and No.2/No.3 and No.4/No.5 according to the engine conditions.                                                                     |  |  |  |
| Starter cut-off control                                  | Theft deterrence has been improved by controlling energization to the starter relay according to an engine stop request signal from the immobilizer system.              |  |  |  |
| Generator control                                        | Controls the energization applied to the generator field coil according to the engine operation and electrical load conditions.                                          |  |  |  |
| CAN                                                      | The PCM sends and receives signals to and from the CAN system related modules via CAN.                                                                                   |  |  |  |

#### PCM CONSTRUCTION/OPERATION [13B-MSP]

id0140g1105400

- Located in front area of the engine compartment.
- 120-pin connector is used for the PCM.

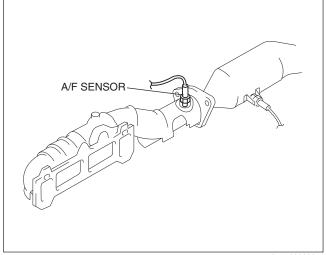


am6zzw00000123

#### AIR FUEL RATIO (A/F) SENSOR FUNCTION [13B-MSP]

id0140g1256000

- The wide-range air/fuel ratio sensor, which can linearly detect the oxygen concentration (air/fuel ratio of the airfuel mixture) in the exhaust gas in all ranges, from lean to rich, is used on the A/F sensor.
- A heater has been adopted on the A/F sensor, allowing stable detection of the oxygen concentration even when the exhaust gas temperature is low.

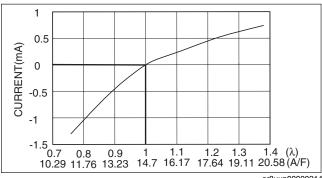

01-40

#### 2009 Mazda RX-8 Service Highlights (3452-1U-08C) CONTROL SYSTEM [13B-MSP]

#### AIR FUEL RATIO (A/F) SENSOR CONSTRUCTION/OPERATION [13B-MSP]

· Installed on the exhaust manifold.

- The wide-range air/fuel ratio sensor is a pump cell type sensor, using both the oxygen concentration cell action and oxygen pump cell action, and can detect the oxygen concentration (air/fuel ratio of the air-fuel mixture) in the exhaust gas in all ranges, from lean to rich.
- A heater is built into the sensor to facilitate the activation of the A/F sensor at engine startup (when the exhaust gas temperature is low).




ar8uun00000251

id0140g1256100

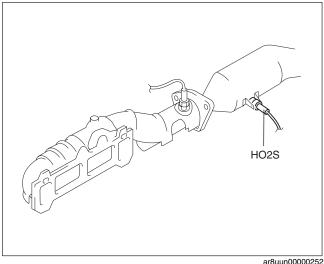
#### Operation

- The wide-range air/fuel ratio sensor converts the oxygen concentration in the exhaust gas into a current value, and sends the value to the PCM.
- The PCM calculates the λ (lambda) value of the air-fuel mixture based on the received current value.
- $(\lambda \text{ (lambda)}) = (\text{actual air/fuel ratio})/$ (stoichiometric air/fuel ratio)

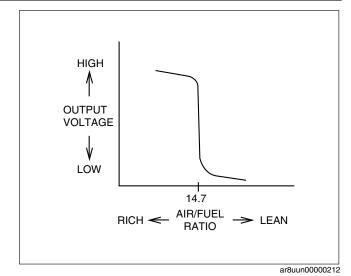


ar8uun00000214

#### **HEATED OXYGEN SENSOR (HO2S) FUNCTION [13B-MSP]**


id0140g1173700

- · Detects the oxygen concentration in the exhaust gas.
- A heater has been adopted, allowing stable detection of the oxygen concentration even when the exhaust gas temperature is low.


#### HEATED OXYGEN SENSOR (HO2S) CONSTRUCTION/OPERATION [13B-MSP]

id0140g1173800

- Installed on the catalytic converter.
- A heater is built into the sensor to facilitate the activation of the HO2S at engine startup (when the exhaust gas temperature is low).
- A zirconium element is used on the sensor. When there is a difference between the oxygen concentration inside and outside the element, electromotive force is generated by the movement of oxygen ions (inside of the zirconium element: atmosphere, outside: exhaust gas). The electromotive force changes significantly at the boundary of the stoichiometric air/fuel ratio (A/ F=14.7). The PCM receives the voltage generated from the HO2S directly, and increases or decreases the fuel injection amount by the fuel injection control so that it is close to the stoichiometric air/fuel ratio.

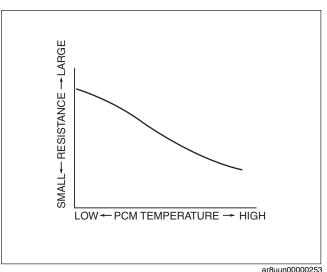


• When the temperature of the zirconium element is low, electromotive force is not generated. Therefore the HO2S is heated by a built-in heater, facilitating the oxygen sensor activation. Due to this, the sensor is efficiently activated even immediately after cold-engine startup, and a stable sensor output can be obtained.



id0140g1182000

#### PCM TEMPERATURE SENSOR FUNCTION [13B-MSP]

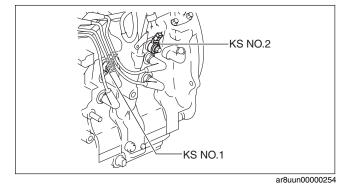

Detects the temperature of the PCM.

### PCM TEMPERATURE SENSOR CONSTRUCTION/OPERATION [13B-MSP]

id0140g1181900

- The PCM temperature sensor is integrated with PCM.
- A thermistor-type sensor (negative pressure thermistor) has been adopted.
- Voltage is output based on the resistance value which changes according to the temperature of the PCM.

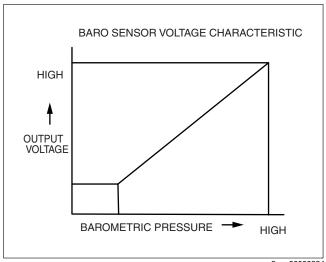
#### **PCM** temperature sensor characteristic




ar8uun00000253

id0140g1174200

#### KNOCK SENSOR (KS) CONSTRUCTION/OPERATION [13B-MSP]


- KS No.1 is installed on the front rotor housing.
- KS No.2 is installed on the rear rotor housing.
- · Converts knocking vibration into a voltage value using the piezoelectric effect of the semiconductor, and sends the value to the PCM.
- The piezoelectric effect is a phenomenon in which a difference in electric potential is produced on the surface of a piezoelectric element by the application of tensile load or pressure from a certain direction. Tensile load and pressure applied to the KS originates from cylinder block vibration caused by abnormal combustion in the engine. The difference in electric potential, which results from the strain by the vibration, is sent to the PCM as a knocking signal.



01-40

#### BAROMETRIC PRESSURE (BARO) SENSOR CONSTRUCTION/OPERATION [13B-MSP]

- The BARO sensor is integrated with PCM.
- The piezoelectric element is enclosed in the sensor and the electric potential difference changes as the BARO drops. The output voltage decreases as the BARO decreases.

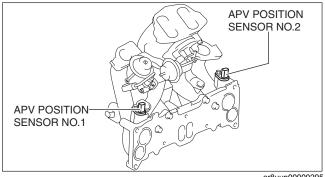


ar8uun00000234

id0140g1172900

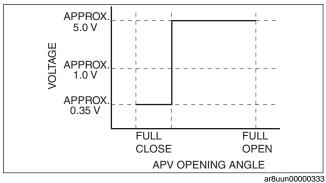
#### **AUXILIARY PORT VALVE (APV) POSITION SENSOR FUNCTION [13B-MSP]**

id0140g1304900


id0140g1305000

• The APV position sensor detects the APV fully-closed position to monitor the APV motor operation condition.

#### AUXILIARY PORT VALVE (APV) POSITION SENSOR CONSTRUCTION/OPERATION [13B-MSP]


· Install the intake manifold.

- The magneto resistance element, used for the sensor, detects the APV fully-closed position and sends a voltage signal to the PCM.
- When the APV closes, the APV position sensor outputs a voltage of 1.0 V or more.



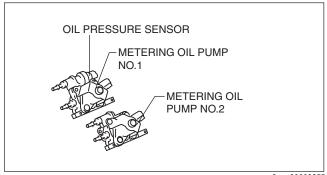
ar8uun00000295

#### **APV** position sensor voltage characteristics



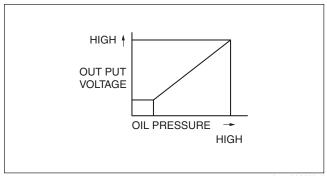
#### OIL PRESSURE SENSOR FUNCTION [13B-MSP]

Monitors the oil pressure in the metering oil pump.


id0140g1790000

id0140g1790100

01-40


#### OIL PRESSURE SENSOR CONSTRUCTION/OPERATION [13B-MSP]

- Installed the metering oil pump No.1.
- When pressure is applied to the piezoelectric element in the sensor, an electric potential difference occurs.
- · Output voltage increases ad the oil pressure increases.



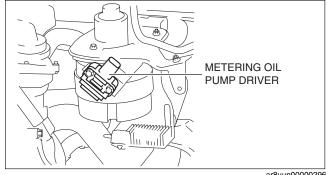
ar8uun00000255

#### Oil pressure sensor characteristic



ar8uun00000256

#### **METERING OIL PUMP DRIVER FUNCTION [13B-MSP]**


id0140g1790200

• The metering oil pump driver operates metering oil pumps No.1 and No.2 to discharge engine oil based on the signals from the PCM.

#### METERING OIL PUMP DRIVER CONSTRUCTION/OPERATION [13B-MSP]

id0140g1790300

- Install the air pump bracket.
- The metering oil pump driver receives the signals from the PCM and switches the internal ground to supply battery voltage to metering oil pumps No.1 and No.2.



ar8uun00000296

01 - 40 - 29

## **SUSPENSION**

02 SECTION

OUTLINE......02-00 WHEEL AND TIRES.......02-12 ON-BOARD DIAGNOSTIC....02-02 FRONT SUSPENSION......02-13

02-00

## **02-00 OUTLINE**

| SUSPENSION ABBREVIATIONS02-00-1   | Suspension     |
|-----------------------------------|----------------|
| SUSPENSION FEATURES02-00-1        | Wheel and Tire |
| SUSPENSION SPECIFICATIONS 02-00-2 |                |

#### SUSPENSION ABBREVIATIONS

id020000100100

| AT           | Automatic Transmission          |
|--------------|---------------------------------|
| CAN          | Controller Area Network         |
| CM           | Control Module                  |
| MT           | Manual Transmission             |
| RF signal(s) | Radio Frequency signal(s)       |
| OFF          | Switch Off                      |
| ON           | Switch On                       |
| PID          | Parameter Identification        |
| TPMS         | Tire Pressure Monitoring System |

#### **SUSPENSION FEATURES**

id020000100200

| Improved rigidity and handling stability | Trapezoidal front suspension tower bar adopted (MT)          |
|------------------------------------------|--------------------------------------------------------------|
| Improved marketability                   | 19 inch wheel and tire adopted for sport suspension          |
| Improved reliability                     | Tire pressure monitoring system (TPMS) specification changed |

#### SUSPENSION SPECIFICATIONS

Suspension

id020000100300

|            |                               |                                               |                                  |                                                                      | Specification                                                              |                  |                     |                  |  |
|------------|-------------------------------|-----------------------------------------------|----------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|------------------|---------------------|------------------|--|
|            | Item                          |                                               |                                  |                                                                      | 2009MY RX-8                                                                |                  | 2008MY RX-8         |                  |  |
| IGIII      |                               |                                               |                                  |                                                                      | Standard suspension                                                        | Sport suspension | Standard suspension | Sport suspension |  |
|            | Туре                          |                                               |                                  |                                                                      | Double-v                                                                   | vishbone         | +                   | _                |  |
|            | Spring type                   |                                               |                                  |                                                                      | Coil s                                                                     | pring            | +                   | _                |  |
|            | Shock absorb                  | er type                                       |                                  |                                                                      | Monotube type: High-pressure<br>gas charged, cylindrical,<br>double-acting |                  | <b>←</b>            |                  |  |
|            | Stabilizer                    | Type                                          |                                  |                                                                      | Torsic                                                                     | n bar            | +                   | _                |  |
|            | Stabilizei                    | Diame                                         | ter                              | (mm {in})                                                            | 26.5 {                                                                     | [1.04]           | 25.4 {1.00}         | 26.5 {1.04}      |  |
| Front      |                               | Total<br>toe-in                               | Tire<br>[Tolerance ±4<br>{0.15}] | (mm {in})                                                            | 2 {0                                                                       | .08}             | <del>-</del>        |                  |  |
| suspension |                               |                                               |                                  | Degree                                                               | 0°11                                                                       | ′±22′            | +                   | _                |  |
|            |                               |                                               | um steering                      | Inner                                                                | 38°                                                                        | 36′              | 38°41′              | 38°36′           |  |
|            | Wheel alignment               | angle<br>[Tolera                              | ance ±3°]                        | Outer                                                                | 33°                                                                        | 18′              | 33°15′              | 33°07′           |  |
|            | (Unloaded*1)                  | Caster angle*2 (Reference)<br>[Tolerance ±1°] |                                  | 6°20′                                                                | 6°22′                                                                      | 6°34′            | 6°43′               |                  |  |
|            |                               | Camber angle*2 (Reference)<br>[Tolerance ±1°] |                                  | -0°03′                                                               | -0°15′                                                                     | 0°04′            | -0°06′              |                  |  |
|            |                               | Steering axis inclination (Reference)         |                                  |                                                                      | 10°59′                                                                     | 11°12′           | 10°52′              | 11°02′           |  |
|            | Туре                          | ,                                             |                                  |                                                                      | Multi                                                                      |                  |                     | _                |  |
|            | Spring type                   |                                               |                                  |                                                                      | Coil s                                                                     | oil spring       |                     | ←                |  |
|            | Shock absorber type           |                                               |                                  | Monotube type: High-pressure gas charged, cylindrical, double-acting |                                                                            | <b>←</b>         |                     |                  |  |
|            | Stabilizer                    | Type                                          |                                  | Torsion bar                                                          |                                                                            | _                |                     |                  |  |
| Rear       | Stabilizer                    |                                               | ter                              | (mm {in})                                                            | 15.9 {0.62}                                                                | 16 (0.63)        | 15.9 {              | (0.62)           |  |
| suspension | Wheel                         |                                               |                                  | Tire al [Tolerance $\pm 4$ (mm {in}) -in $\{0.15\}$ ]                |                                                                            | 0.14}            | 3 {0                |                  |  |
|            | alignment                     |                                               | Degree                           |                                                                      | 0°19                                                                       | ′±20′            | 0°16                | ′±20′            |  |
|            | (Unloaded <sup>*1</sup> )     | Camber angle*2<br>[Tolerance ±1°]             |                                  | -0°45′                                                               | -0°48′                                                                     | -0°56′           | -1°07′              |                  |  |
|            | Thrust angle [Tolerance ±48'] |                                               |                                  | 0                                                                    | 0                                                                          | +                |                     |                  |  |

 <sup>\*1 :</sup> Unloaded: Fuel tank is full. Engine coolant and engine oil are at specified level. Spare tire, jack and tools are in designated position.
 \*2 : Difference between left and right not exceed 1°30′.

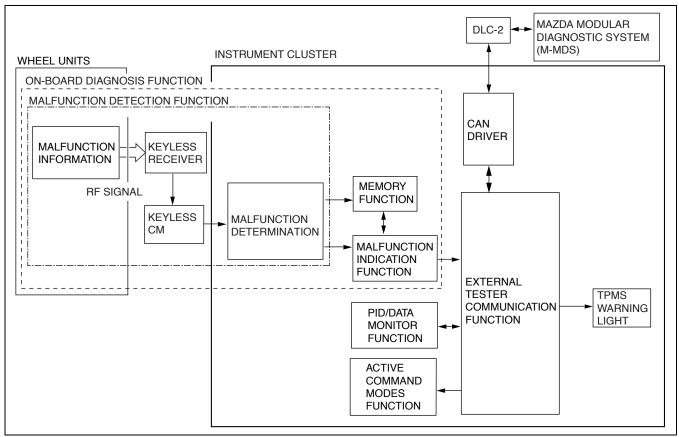
#### Wheel and Tire

| Item  |                       |           | Specification  |               |  |  |
|-------|-----------------------|-----------|----------------|---------------|--|--|
| Tire  | Size                  |           | 225/45R18 91W  | 225/40R19 89W |  |  |
|       | Size                  |           | 18 x 8J        | 19 x 8J       |  |  |
|       | Material              |           | Aluminum alloy |               |  |  |
| Wheel | Offset                | (mm {in}) | 50 {2.0}       | 47 {1.9}      |  |  |
|       | Pitch circle diameter | (mm {in}) | 114.3 {4.50}   |               |  |  |

#### 02-02

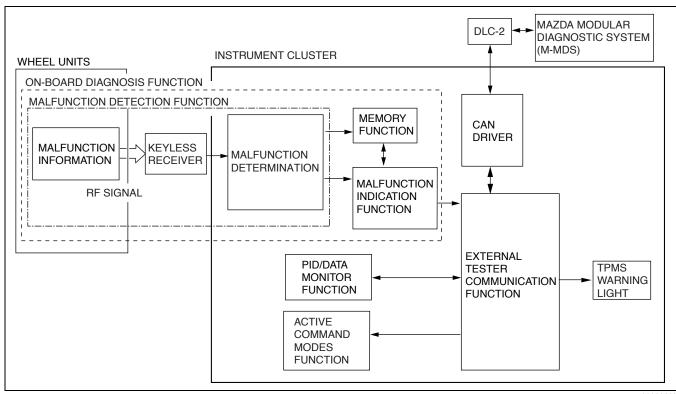
### 02-02 ON-BOARD DIAGNOSTIC

| 02-02-5 |
|---------|
|         |
|         |
|         |
| 02-02-5 |
|         |
|         |
|         |
|         |
| 02-02-6 |
|         |
| 02-02-6 |
| 02-02-6 |
| 02-02-7 |
| (       |


### ON-BOARD DIAGNOSTIC SYSTEM OUTLINE (TIRE PRESSURE MONITORING SYSTEM)

id020200100100

- The on-board diagnostic system consists of a malfunction detection system that detects abnormalities in input/output signals when the ignition switch is at the ON position, a data monitor function that reads out specified input/output signals, and an active command modes function that execuse the wheel unit ID registration.
- The Data Link Connector 2 (DLC-2), which groups together all the connectors used for malfunction diagnosis into a single location, has been adopted, thereby improving serviceability. Diagnosis is performed by connecting the Mazda Modular Diagnostic System (M-MDS) to the DLC-2.
- In addition to DTC read-out, the Mazda Modular Diagnostic System (M-MDS) is used to clear DTCs using the
  display screen of the diagnostic tester, and to access the data monitor, providing enhanced malfunction
  diagnosis and improved serviceability.


#### **ON-BOARD DIAGNOSTIC**

# Block Diagram With advanced keyless system



#### acxuun00000344

#### With keyless entry system



acxuun00000689

#### ON-BOARD DIAGNOSTIC SYSTEM FUNCTION (TIRE PRESSURE MONITORING SYSTEM)

id020200100200

#### **Malfunction Detection Function**

- The malfunction detection function detects malfunctions in the input/output signal system based on abnormal signals from the wheel units when the ignition switch is in the ON position or driving the vehicle.
- The TPMS warning light illuminates for **approx**. **3.0 s** when the ignition switch is turned to the ON position to inspect for open circuits in the light.

#### **Malfunction Indication Function**

When the malfunction detection function detects a malfunction, the TPMS warning light illuminates to advise
the driver. Using the external tester communication function, DTCs can be output to the DLC-2 via the CAN
communication line. At the same time, malfunction detection results are sent to the memory functions.

#### **Memory Function**

- The memory function stores DTCs for malfunctions in input/output signal systems. With this function, once a
  DTC is stored it is not cleared after the ignition switch has been turned off (LOCK position), even if the
  malfunctioning signal system has returned to normal.
- Since instrument cluster has a built-in non-volatile memory, DTCs are not cleared even if the battery is removed. Therefore, it is necessary to clear the memory after performing repairs. Refer to the Workshop Manual for the DTC clearing procedure.

#### **DTC Table**

| Malfunction location                     | DTC   | TPMS warning light illumination condition | TPMS warning light illumination pattern |  |
|------------------------------------------|-------|-------------------------------------------|-----------------------------------------|--|
| Instrument cluster                       | B1342 | Illuminated                               | ON OFF                                  |  |
| Non-volatile memory failure              | B2143 | Illuminated                               | ON OFF                                  |  |
| System configuration malfunction         | B2477 | Illuminated                               | ON 0.5 s 0.5 s 0.5 s                    |  |
| Wheel unit 1 internal fault              | B2868 | Illuminated                               | 0.5                                     |  |
| Wheel unit 2 internal fault              | B2869 | Illuminated                               | ON 2 S                                  |  |
| Wheel unit 3 internal fault              | B2870 | Illuminated                               |                                         |  |
| Wheel unit 4 internal fault              | B2871 | Illuminated                               | OFF 2 s                                 |  |
| CAN system communication error (HS-CAN)  | U0073 |                                           | 0.2 s                                   |  |
| Communication error to PCM               | U0100 |                                           |                                         |  |
| Lost communication with keyless receiver | U0127 | Illuminated                               | OFF                                     |  |
| Abnormal massage from PCM                | U2023 |                                           | 1 s                                     |  |

02-02

### **ON-BOARD DIAGNOSTIC**

| Malfunction location                   | DTC   | TPMS warning light illumination condition | TPMS warning light illumination pattern |
|----------------------------------------|-------|-------------------------------------------|-----------------------------------------|
| Wheel unit 1 communication malfunction | U2616 | Illuminated                               | 1 s                                     |
| Wheel unit 2 communication malfunction | U2617 | Illuminated                               | ON T                                    |
| Wheel unit 3 communication malfunction | U2618 | Illuminated                               | OFF—                                    |
| Wheel unit 4 communication malfunction | U2619 | Illuminated                               | '1 s'                                   |

# ON-BOARD DIAGNOSTIC SYSTEM PID/DATA MONITOR FUNCTION (TIRE PRESSURE MONITORING SYSTEM)

id020200100300

• This function allows access to certain data values, input signal, calculated values, and system status information.

#### PID/DATA monitor table

| PID name   | Description (Input/output part)                                      | Operation/unit<br>(Mazda Modular Diagnostic<br>System (M-MDS)) |
|------------|----------------------------------------------------------------------|----------------------------------------------------------------|
| AI_WU1_ID  | Candidate wheel unit during registering wheel unit ID (wheel unit 1) | -                                                              |
| AI_WU2_ID  | Candidate wheel unit during registering wheel unit ID (wheel unit 2) | -                                                              |
| AI_WU3_ID  | Candidate wheel unit during registering wheel unit ID (wheel unit 3) | -                                                              |
| AI_WU4_ID  | Candidate wheel unit during registering wheel unit ID (wheel unit 4) | -                                                              |
| AI_WU1_P   | Tire pressure during registering wheel unit ID (wheel unit 1)        | Pa, psi                                                        |
| AI_WU2_P   | Tire pressure during registering wheel unit ID (wheel unit 2)        | Pa, psi                                                        |
| AI_WU3_P   | Tire pressure during registering wheel unit ID (wheel unit 3)        | Pa, psi                                                        |
| AI_WU4_P   | Tire pressure during registering wheel unit ID (wheel unit 4)        | Pa, psi                                                        |
| CCNT_TPMS  | Number of continuous DTCs                                            | -                                                              |
| FFD1_WU1_P | Freeze frame PID data1_tire pressure (wheel unit 1)                  | Pa, psi                                                        |
| FFD1_WU2_P | Freeze frame PID data1_tire pressure (wheel unit 2)                  | Pa, psi                                                        |
| FFD1_WU3_P | Freeze frame PID data1_tire pressure (wheel unit 3)                  | Pa, psi                                                        |
| FFD1_WU4_P | Freeze frame PID data2_tire pressure (wheel unit 4)                  | Pa, psi                                                        |
| FFD2_WU1_P | Freeze frame PID data2_tire pressure (wheel unit 1)                  | Pa, psi                                                        |
| FFD2_WU2_P | Freeze frame PID data2_tire pressure (wheel unit 2)                  | Pa, psi                                                        |
| FFD2_WU3_P | Freeze frame PID data2_tire pressure (wheel unit 3)                  | Pa, psi                                                        |
| FFD2_WU4_P | Freeze frame PID data2_tire pressure (wheel unit 4)                  | Pa, psi                                                        |
| FFD1_WU1_T | Freeze frame PID data1_tire temperature (wheel unit 1)               | °C, °F                                                         |
| FFD1_WU2_T | Freeze frame PID data1_tire temperature (wheel unit 2)               | °C, °F                                                         |
| FFD1_WU3_T | Freeze frame PID data1_tire temperature (wheel unit 3)               | °C, °F                                                         |
| FFD1_WU4_T | Freeze frame PID data2_tire temperature (wheel unit 4)               | °C, °F                                                         |
| FFD2_WU1_T | Freeze frame PID data2_tire temperature (wheel unit 1)               | °C, °F                                                         |
| FFD2_WU2_T | Freeze frame PID data2_tire temperature (wheel unit 2)               | °C, °F                                                         |
| FFD2_WU3_T | Freeze frame PID data2_tire temperature (wheel unit 3)               | °C, °F                                                         |
| FFD2_WU4_T | Freeze frame PID data2_tire temperature (wheel unit 4)               | °C, °F                                                         |
| FFD1_MLG   | Freeze frame PID data1 mileage                                       | m, mi (ft)                                                     |
| FFD2_MLG   | Freeze frame PID data2 mileage                                       | m, mi (ft)                                                     |
| FFD1_SPD   | Freeze flame PID data1_speed                                         | KPH, MPH                                                       |
| FFD2_SPD   | Freeze flame PID data2_speed                                         | KPH, MPH                                                       |
| ID_LAST    | Last received tire transmitter ID code value                         | -                                                              |
| ID_WU1*    | Registered wheel unit ID (Wheel unit 1)                              | _                                                              |

### 02-02

#### **ON-BOARD DIAGNOSTIC**

| PID name  | Description (Input/output part)         | Operation/unit<br>(Mazda Modular Diagnostic<br>System (M-MDS)) |
|-----------|-----------------------------------------|----------------------------------------------------------------|
| ID_WU2*   | Registered wheel unit ID (Wheel unit 2) | _                                                              |
| ID_WU3*   | Registered wheel unit ID (Wheel unit 3) | _                                                              |
| ID_WU4*   | Registered wheel unit ID (Wheel unit 4) | _                                                              |
| SPODMETER | Vehicle speed                           | KPH, MPH                                                       |
| VBATT     | Battery positive voltage                | V                                                              |
| WU1_P*    | Tire pressure (wheel unit 1)            | Pa, psi                                                        |
| WU2_P*    | Tire pressure (wheel unit 2)            | Pa, psi                                                        |
| WU3_P*    | Tire pressure (wheel unit 3)            | Pa, psi                                                        |
| WU4_P*    | Tire pressure (wheel unit 4)            | Pa, psi                                                        |
| WU1_T*    | Tire temperature (wheel unit 1)         | °C, °F                                                         |
| WU2_T*    | Tire temperature (wheel unit 2)         | °C, °F                                                         |
| WU3_T*    | Tire temperature (wheel unit 3)         | °C, °F                                                         |
| WU4_T*    | Tire temperature (wheel unit 4)         | °C, °F                                                         |

<sup>\* :</sup> Data transmission from the wheel unit occurs when the vehicle speed is 25 km/h {15.5 mph} or more. Due to this, the current air pressure and temperature data can only be displayed after the vehicle is driven at 25 km/h {15.5 mph} or more. Also, the ID\_LAST, and tire pressure and internal tire air temperature data are erased when the instrument cluster connector and the battery terminal are disconnected. If the instrument cluster is replaced or the battery terminals are disconnected, drive the vehicle at 25 km/h {15.5 mph} or more and display the tire pressure PID after the data transmission.

# ON-BOARD DIAGNOSTIC SYSTEM ACTIVE COMMAND MODES FUNCTION (TIRE PRESSURE MONITORING SYSTEM)

id020200100400

• The active command modes function is used for executing the wheel unit ID registration

| Command name | Description                | Operation | Operation condition   |
|--------------|----------------------------|-----------|-----------------------|
| IDR_MODE     | Wheel unit ID registration | Off/On    | Ignition switch at ON |

# ON-BOARD DIAGNOSTIC SYSTEM FREEZE FRAME DATA MONITOR FUNCTION (TIRE PRESSURE MONITORING SYSTEM)

id020200100500

The Freeze Frame Data monitor items are shown below.

#### ON-BOARD DIAGNOSTIC

#### Freeze frame data monitor table

| PID name   | Description                                            | Operation/unit<br>(Mazda Modular Diagnostic<br>System (M-MDS)) |
|------------|--------------------------------------------------------|----------------------------------------------------------------|
| FFD1_WU1_P | Freeze frame PID data1_tire pressure (wheel unit 1)    | Pa, psi                                                        |
| FFD1_WU2_P | Freeze frame PID data1_tire pressure (wheel unit 2)    | Pa, psi                                                        |
| FFD1_WU3_P | Freeze frame PID data1_tire pressure (wheel unit 3)    | Pa, psi                                                        |
| FFD1_WU4_P | Freeze frame PID data1_tire pressure (wheel unit 4)    | Pa, psi                                                        |
| FFD2_WU1_P | Freeze frame PID data2_tire pressure (wheel unit 1)    | Pa, psi                                                        |
| FFD2_WU2_P | Freeze frame PID data2_tire pressure (wheel unit 2)    | Pa, psi                                                        |
| FFD2_WU3_P | Freeze frame PID data2_tire pressure (wheel unit 3)    | Pa, psi                                                        |
| FFD2_WU4_P | Freeze frame PID data2_tire pressure (wheel unit 4)    | Pa, psi                                                        |
| FFD1_WU1_T | Freeze frame PID data1_tire temperature (wheel unit 1) | °C, °F                                                         |
| FFD1_WU2_T | Freeze frame PID data1_tire temperature (wheel unit 2) | °C, °F                                                         |
| FFD1_WU3_T | Freeze frame PID data1_tire temperature (wheel unit 3) | °C, °F                                                         |
| FFD1_WU4_T | Freeze frame PID data2_tire temperature (wheel unit 4) | °C, °F                                                         |
| FFD2_WU1_T | Freeze frame PID data2_tire temperature (wheel unit 1) | °C, °F                                                         |
| FFD2_WU2_T | Freeze frame PID data2_tire temperature (wheel unit 2) | °C, °F                                                         |
| FFD2_WU3_T | Freeze frame PID data2_tire temperature (wheel unit 3) | °C, °F                                                         |
| FFD2_WU4_T | Freeze frame PID data2_tire temperature (wheel unit 4) | °C, °F                                                         |
| FFD1_MLG   | Freeze frame PID data1 mileage                         | m, mi (ft)                                                     |
| FFD2_MLG   | Freeze frame PID data2 mileage                         | m, mi (ft)                                                     |
| FFD1_SPD   | Freeze flame PID data1_speed                           | KPH, MPH                                                       |
| FFD2_SPD   | Freeze flame PID data2_speed                           | KPH, MPH                                                       |

# ON-BOARD DIAGNOSTIC SYSTEM EXTERNAL TESTER COMMUNICATION FUNCTION (TIRE PRESSURE MONITORING SYSTEM)

id020200100600

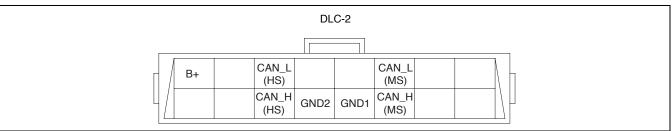
#### **External Tester Communication Function**

 The external tester communication function communicates diagnostic information (reading DTCs and reading input/output signal) by sending and receiving signals between the instrument cluster and an external tester.
 Connection and communication information

|                                                      | External tester                      |                                         |  |
|------------------------------------------------------|--------------------------------------|-----------------------------------------|--|
|                                                      | Mazda Modular Diag                   | Mazda Modular Diagnostic System (M-MDS) |  |
|                                                      | Connection Communicati               |                                         |  |
| On-board diagnostic (malfunction detection) function | Input/output: CAN communication line | Serial communication                    |  |
| PID/Data monitor function                            | Input/output: CAN communication line | Serial communication                    |  |
| Active command modes function                        | Input/output: CAN communication line | Serial communication                    |  |

#### **Serial Communication**

- Serial communication (synchronous communication) is a method of communication in which many pieces of information are sent and received instantaneously through a single wire.
- By connecting the Mazda Modular Diagnostic System (M-MDS) to DLC-2, diagnostic information can be sent and received between the Mazda Modular Diagnostic System (M-MDS) and the instrument cluster via the CAN communication line.
- The instrument cluster receives signals for the malfunction detection function and data monitor function from the Mazda Modular Diagnostic System (M-MDS), and sends information about DTCs and input/output part operating conditions to the Mazda Modular Diagnostic System (M-MDS).


| Diagnostic function            | Signal received                                                 | Signal sent                                    |
|--------------------------------|-----------------------------------------------------------------|------------------------------------------------|
| Malfunction detection function | DTC verification signal                                         | DTC                                            |
| PID/Data monitor function      | Request signal to read selected monitor item                    | Monitor information for requested monitor item |
| Active command modes function  | Operation command signal for selected active command modes item | Wheel unit ID registration                     |

#### **ON-BOARD DIAGNOSTIC**

#### **DLC-2 CONSTRUCTION**

id020200100700

- A DLC-2 connector conforming to ISO (International Organization for Standardization) standards has been added.
- Shape and terminal arrangement as stipulated by the ISO 15031-3 (SAE J1962) international standard has been adopted for this connector. The connector has a 16-pin construction that includes the CAN\_H (HS), CAN\_L (HS), CAN\_H (MS), CAN\_L (MS), GND1, GND2 and B+ terminals.



acxuun00000291

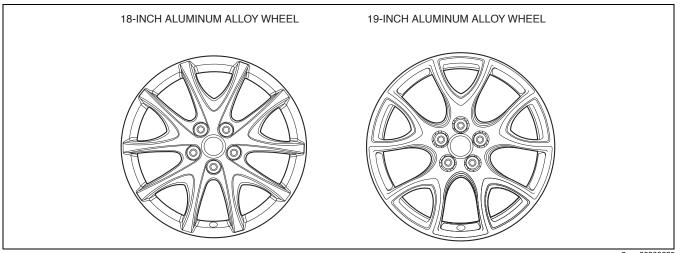
| Terminal   | Function                              |
|------------|---------------------------------------|
| CAN_L (HS) | Serial communication Lo terminal (HS) |
| CAN_H (HS) | Serial communication Hi terminal (HS) |
| CAN_L (MS) | Serial communication Lo terminal (MS) |
| CAN_H (MS) | Serial communication Hi terminal (MS) |
| GND1       | Body ground terminal                  |
| GND2       | Serial communication ground terminal  |
| B+         | Battery power supply terminal         |

02-02

### **WHEEL AND TIRES**

### 02-12 WHEEL AND TIRES

| WHEELS AND TIRES OUTLINE 02-12-1     | Construction                         |
|--------------------------------------|--------------------------------------|
| WHEELS AND TIRES                     | Operation                            |
| STRUCTURAL VIEW 02-12-1              | Component Parts/Function             |
| TIRE PRESSURE MONITORING             | TIRE PRESSURE MONITORING             |
| SYSTEM (TPMS) OUTLINE 02-12-2        | SYSTEM (TPMS) OPERATION02-12-5       |
| TIRE PRESSURE MONITORING             | Identification Code Recognition      |
| SYSTEM (TPMS)                        | Function                             |
| STRUCTURAL VIEW 02-12-2              | Tire Pressure Determination And      |
| TIRE PRESSURE MONITORING             | Warning Function02-12-5              |
| SYSTEM (TPMS)                        | TIRE PRESSURE MONITORING             |
| WIRING DIAGRAM 02-12-3               | SYSTEM (TPMS) WARNING LIGHT          |
| With Advanced Keyless System 02-12-3 | CONSTRUCTION                         |
| With Keyless Entry System 02-12-3    | CONTROLLER AREA NETWORK              |
| TIRE PRESSURE MONITORING             | (CAN) OUTLINE                        |
| SYSTEM (TPMS)                        | Received Information from PCM02-12-6 |
| CONSTRUCTION/OPERATION 02-12-4       |                                      |


### WHEELS AND TIRES OUTLINE

id021200100100

- An 18-inch aluminum alloy wheel is equipped for the standard suspension, and a 19-inch aluminum alloy wheel is equipped for the sport suspension.
- An adhesive-type balance weight is fastened on the outer side of the wheel from behind and is not visible from the styled side.
- In consideration of the environment, a balance weight made of steel has been adopted to reduce amount of lead used in the vehicle.

#### WHEELS AND TIRES STRUCTURAL VIEW

id021200100200



ar8uun00000225

02-12-1

02-12

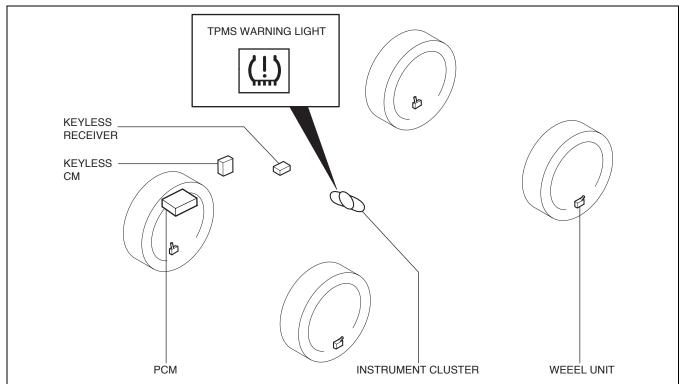
#### WHEEL AND TIRES

#### TIRE PRESSURE MONITORING SYSTEM (TPMS) OUTLINE

id021200100400

• The tire pressure monitoring system (TPMS) has been adopted to assist the driver in understanding the tire status. It alerts the driver with the TPMS warning light and buzzer if there is an excessive drop in air pressure or a flat tire is detected.

#### Caution


- Each wheel unit has its own preset identification code. If a system component is replaced, the
  system becomes inoperative since the instrument cluster cannot recognize the identification
  codes. Therefore, be sure to configure the identification codes of wheel units when any of the
  following items have been performed. For the identification code configuration procedure, refer to
  the Workshop Manual.
  - Disc wheel replacement
  - Wheel unit replacement
  - Instrument cluster replacement

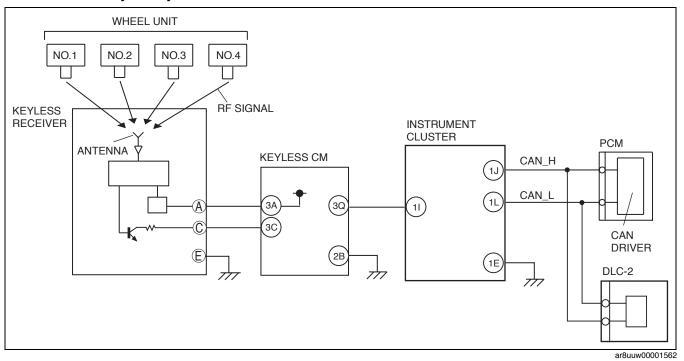
#### Note

- Perform tire pressure adjustment before driving. (When tires are cold.)
- Tire pressure changes due to changes in ambient temperature and internal tire temperature.
  - In an area or a season with varying of temperatures, tire pressure will change due to ambient temperature change. If the tire pressure is lower than the lower-limit pressure due to low ambient temperature, the TPMS warning light may illuminate. Adjust the pressure when the TPMS warning light illuminates.
  - Tire pressure rises after driving because the internal temperature of the tire is high, If tire pressure is adjusted to the standard value when the internal temperature of the tire is high, the tire pressure lowers when the internal temperature decreases to the same level as the ambient temperature. If the tire pressure is lower than the lower-limit temperature, the TPMS warning light may illuminate.
- As a general reference, air pressure changes approx.10 kPa {0.1 kgf/cm², 1.5 psi} when the temperature changes 10 °C {50 °F}.

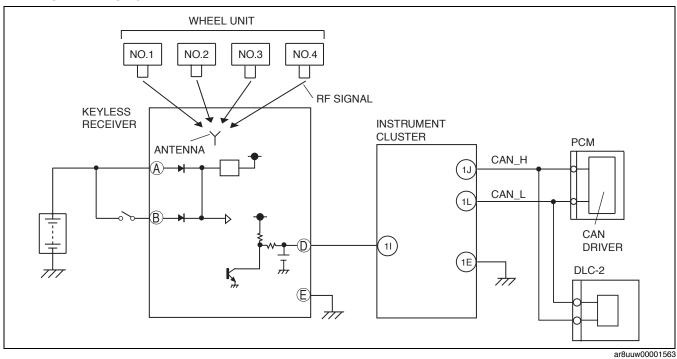
#### TIRE PRESSURE MONITORING SYSTEM (TPMS) STRUCTURAL VIEW

id021200100500




ar8uun00000240

02-12


#### .....

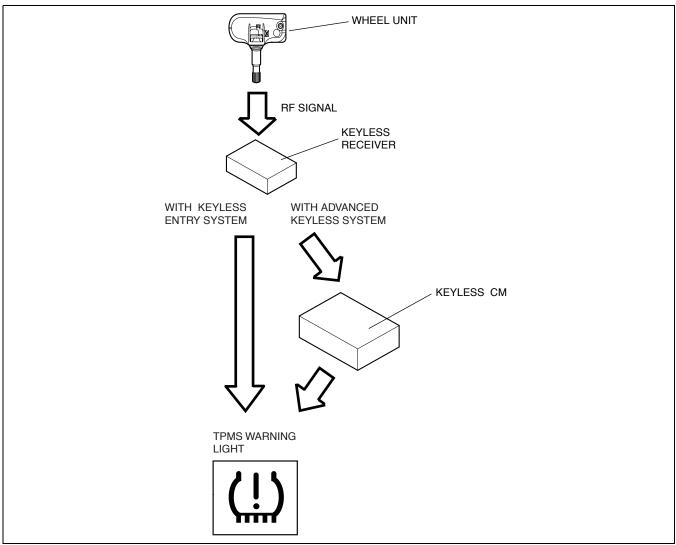
TIRE PRESSURE MONITORING SYSTEM (TPMS) WIRING DIAGRAM

#### With Advanced Keyless System



#### With Keyless Entry System




02-12-3

#### TIRE PRESSURE MONITORING SYSTEM (TPMS) CONSTRUCTION/OPERATION

id021200100700

#### Construction

 The TPMS consists of wheel units that detect air pressure, temperature and acceleration of each tire, and a TPMS control module that receives data (RF signals) sent from the wheel units to monitor the air pressure of each tire.



ac9uun00000588

#### Operation

- The wheel unit installed to each wheel sends data on air pressure, temperature and acceleration of each tire by means of RF signals. The keyless receiver receives these signals with a built-in antenna.
- With advanced keyless system: Signals received by the keyless receiver are transmitted to the instrument cluster via the keyless CM.
- With keyless entry system: Signals received by the keyless receiver are transmitted to the instrument cluster.
- The instrument cluster monitors the air pressure of each tire based on the tire data sent from each wheel unit. If the instrument cluster detects an excessive drop in air pressure or flat tire, the instrument cluster illuminates the TPMS warning light.

#### WHEEL AND TIRES

#### **Component Parts/Function**

|                                           | Part name            | Function                                                                                                                                                                                                                                                                             |  |  |
|-------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Wheel unit                                |                      | <ul> <li>Monitors air pressure, temperature, and acceleration of each tire, and sends RF signals.</li> <li>Sends data if any abnormality is detected in the wheel unit.</li> </ul>                                                                                                   |  |  |
| Keyless receiver                          |                      | <ul> <li>With advanced keyless system: Send the RF signals received from the wheel unit to the keyless CM.</li> <li>With keyless entry system: Send the RF signals received from the wheel unit to the instrument cluster.</li> </ul>                                                |  |  |
| Keyless CM (with advanced keyless system) |                      | <ul> <li>Receives data from the keyless receiver.</li> <li>Sends data to the instrument cluster.</li> </ul>                                                                                                                                                                          |  |  |
| PCM                                       | Vehicle speed signal | Inputs vehicle speed signals to the instrument cluster via CAN communication.                                                                                                                                                                                                        |  |  |
| Instrument cluster                        |                      | Receives data from keyless CM (with advanced keyless system) or keyless receiver (with keyless entry system) and monitor the air pressure of each wheel. If it determines from those signals that tire pressure is abnormal, it controls the TPMS warning light to alert the driver. |  |  |
|                                           | TPMS warning light   | If the instrument cluster detects abnormal air pressure or any abnormality in the system, the light is illuminated to alert the driver.                                                                                                                                              |  |  |

#### TIRE PRESSURE MONITORING SYSTEM (TPMS) OPERATION

id021200101000

- The instrument cluster monitors the tire pressure of each tire and the wheel units for abnormalities using the received data. If any abnormality is found, it controls TPMS warning light to alert and notify the driver.
- The instrument cluster controls the following functions based on the received data:

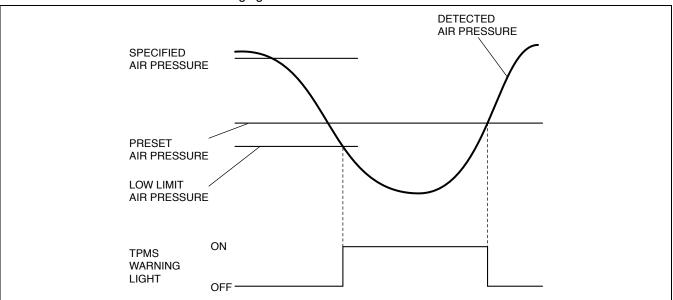
#### **Function list**

| Identification code recognition function     | Recognizes whether received signals are from own wheel units.                                                                                                              |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Tire pressure determination/warning function | Compares received tire pressure data with preset values. If the pressure is determined to be too low, the instrument cluster alerts the driver via the TPMS warning light. |  |  |

#### **Identification Code Recognition Function**

- Since the identification codes of wheel units mounted on the vehicle have been configured in the instrument cluster, the instrument cluster can verify the identification codes sent from the wheel units against the configured identification codes.
- When the received identification code agrees with the configured identification code, data such as tire pressure
  is updated according to the received signal. When the identification code does not agree, that signal data is
  ignored.

#### **Tire Pressure Determination And Warning Function**


- The instrument cluster determines the tire pressure status of each wheel by comparing tire pressure data received from the wheel units with the preset values in the instrument cluster.
- If a malfunction is detected in the received signals, the instrument cluster flashes the TPMS warning light to notify the driver of a tire malfunction.
- The informing/warning of an abnormal tire pressure determination takes precedence over the informing/warning of a missing signal or malfunction determination.

#### Low-pressure determination

- When tire pressure data is lower than the detection value configured in the instrument cluster, the instrument cluster determines that the tire for that wheel unit has low tire pressure.
  - If low tire pressure is determined when the ignition is on, the TPMS warning light is illuminated.
  - If low tire pressure is determined when the ignition is off, the instrument cluster performs an open-circuit check<sup>\*1</sup> on the TPMS warning light after the ignition is turned on, and then illuminates the TPMS warning light.

#### WHEEL AND TIRES

- The low-pressure determination is retained until tire pressure data from the applicable wheel unit returns to the preset value.
  - If tire pressure data that is higher than the specified value is received when the ignition is on, the instrument cluster turns out the TPMS warning light.
  - If tire pressure data that is higher than the specified value is received when the ignition is off, the module performs an open-circuit check\*1 on the TPMS warning light after the ignition is turned on and turns out the TPMS warning light.
    - <sup>\*1</sup>: The instrument cluster turns on the TPMS warning light for **3 s** after the ignition is turned on for an opencircuit check of the TPMS warning light.



acxuun00000352

#### TIRE PRESSURE MONITORING SYSTEM (TPMS) WARNING LIGHT CONSTRUCTION

id021200101100

- · The TPMS warning light is built into the instrument cluster.
- In the event of any abnormality in tire pressure or in the system, signals illuminate the warning light to alert the driver.



acxuun00000691

#### **CONTROLLER AREA NETWORK (CAN) OUTLINE**

 The instrument cluster receives information using the CAN system. See Section 09 for detailed information regarding the CAN system. (See 09-40-1 CONTROL SYSTEM OUTLINE.) (See 09-40-3 CONTROLLER AREA NETWORK (CAN) SYSTEM WIRING DIAGRAM.) (See 09-40-7 CONTROLLER AREA NETWORK (CAN) SYSTEM SIGNAL-CHART.)

#### Received Information from PCM

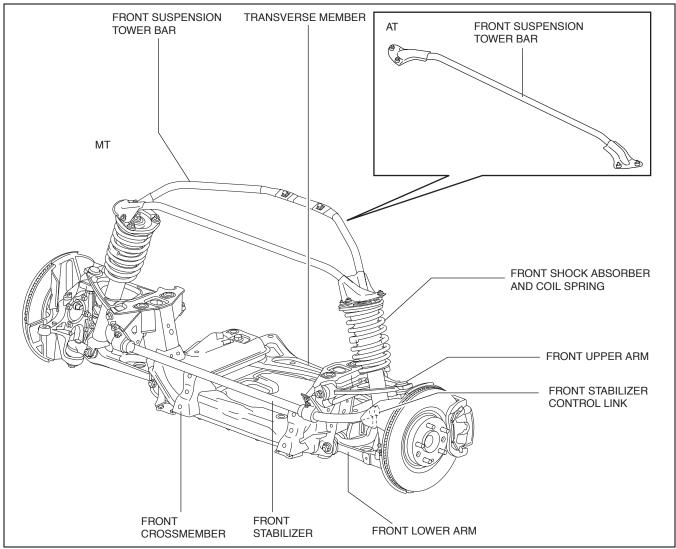
· Vehicle speed

### 02-13

### 02-13 FRONT SUSPENSION

FRONT SUSPENSION OUTLINE . . . . . 02-13-1

FRONT SUSPENSION
STRUCTURAL VIEW ......02-13-1


#### FRONT SUSPENSION OUTLINE

id021300100100

• Trapezoidal front suspension tower bar adopted to improve the rigidity and handling stability. (MT)

#### FRONT SUSPENSION STRUCTURAL VIEW

id021300100200



ar8uun00000226

# **DRIVELINE/AXLE**

**03-00 OUTLINE** 

DRIVELINE/AXLE ABBREVIATIONS ...03-00-1 DRIVELINE/AXLE FEATURES ......03-00-1

DRIVELINE/AXLE SPECIFICATIONS... 03-00-1

**DRIVELINE/AXLE ABBREVIATIONS** 

id030000150300

03-00

| AT | Automatic Transmission |
|----|------------------------|
| MT | Manual Transmission    |

#### **DRIVELINE/AXLE FEATURES**

id030000100100

| Improved driveability | • | Final gear ratio optimized          |
|-----------------------|---|-------------------------------------|
| improved driveability | • | Drive shaft specification optimized |

#### **DRIVELINE/AXLE SPECIFICATIONS**

id030000100200

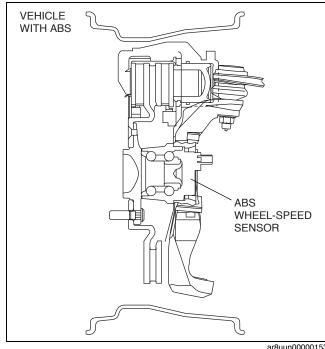
|                          |                   |                                                                              | Specification                                                                |                                                                                                                                                    |                                                        |  |  |
|--------------------------|-------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| Ite                      | em                | 2009M                                                                        | Y RX-8                                                                       | 2008M                                                                                                                                              | 2008MY RX-8                                            |  |  |
|                          |                   | MT AT                                                                        |                                                                              | MT                                                                                                                                                 | AT                                                     |  |  |
| Front axle               |                   |                                                                              |                                                                              |                                                                                                                                                    |                                                        |  |  |
| Bearing type             |                   | Angular ba                                                                   | all bearing                                                                  | +                                                                                                                                                  | _                                                      |  |  |
| Rear axle                |                   |                                                                              |                                                                              |                                                                                                                                                    |                                                        |  |  |
| Bearing type             |                   | Angular ba                                                                   | all bearing                                                                  | +                                                                                                                                                  | _                                                      |  |  |
| Rear drive shaft         |                   |                                                                              |                                                                              |                                                                                                                                                    |                                                        |  |  |
| Joint type               | Wheel side        | Bell                                                                         |                                                                              | +                                                                                                                                                  | _                                                      |  |  |
| John type                | Differential side | Tripod                                                                       | d joint                                                                      |                                                                                                                                                    | _                                                      |  |  |
| Shaft diameter (mm {in}) |                   | 34.0 {1.34}<br>(Maximum<br>diameter)<br>28.6 {1.13}<br>(Minimum<br>diameter) | 25.8 {1.02}<br>(Maximum<br>diameter)<br>24.0 {0.95}<br>(Minimum<br>diameter) | Left side: 31.0 {1.22} (Maximum diameter) 27.0 {1.06} (Minimum diameter) Right side: 34.0 {1.34} (Maximum diameter) 27.0 {1.06} (Minimum diameter) | Left side:<br>25.0 {0.98}<br>Right side<br>25.8 {1.02} |  |  |
| Rear differential        | T                 | <del></del>                                                                  |                                                                              |                                                                                                                                                    |                                                        |  |  |
| Reduction gear type      |                   | Hypoid gear                                                                  |                                                                              | <b>←</b>                                                                                                                                           |                                                        |  |  |
| Differential gear type   |                   | Straight bevel gear                                                          |                                                                              | <b>←</b>                                                                                                                                           |                                                        |  |  |
| Ring gear size (inch)    |                   | 8                                                                            |                                                                              |                                                                                                                                                    |                                                        |  |  |
| Reduction ratio          |                   | 4.777                                                                        | 4.300                                                                        | 4.4                                                                                                                                                | 144                                                    |  |  |

### **OUTLINE**

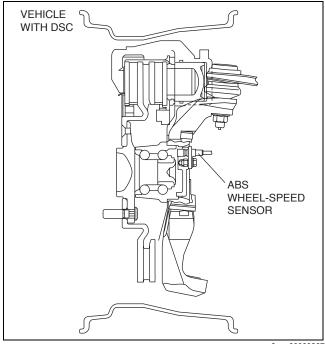
|                      |                     |             |                        |                                                                             | Speci       | fication |               |
|----------------------|---------------------|-------------|------------------------|-----------------------------------------------------------------------------|-------------|----------|---------------|
| Item                 |                     |             | 2009M                  | Y RX-8                                                                      | 2008MY RX-8 |          |               |
|                      |                     |             | -                      | MT                                                                          | AT          | MT       | AT            |
| Number o             | f gear              | Drive pinio | n                      | 9                                                                           | 10          |          | 9             |
| teeth                |                     | Ring gear   |                        | 43                                                                          |             | 4        | 10            |
|                      |                     | Grade       |                        | API service GL-5  SAE 90  SAE 80W-90  SAE 75W-90 (Not available from MAZDA) |             | •        | _             |
| Differenti<br>al oil | Туре                | Viscosity   |                        |                                                                             |             | •        | <del>-</del>  |
|                      | Capacity (approx. c | ιuantity)   | (L {US qt,<br>Imp qt}) | 1.3 {1.4, 1.1}                                                              |             | •        | <del>:-</del> |
| Propeller            | shaft               |             |                        |                                                                             |             |          |               |
| Length               |                     | (mm {in})   | L                      |                                                                             | {42.44}     |          | <u></u>       |
| Diameter             |                     |             | D1                     | 76 (3.0) 82.6 (3.25)                                                        |             |          | <u></u>       |
| (mm {in})            |                     |             | D2                     | 71.5 {2.81}                                                                 | _           |          |               |
| . , , , ,            |                     |             | D3                     | 76 {3.0}                                                                    | _           | •        |               |
|                      |                     |             |                        | D1                                                                          | D2 )//      | D3       |               |
|                      | AT                  |             |                        | D1                                                                          |             |          |               |

#### 03-11 **FRONT AXLE**

FRONT AXLE OUTLINE . . . . . . . . . . . . 03-11-1 **FRONT AXLE** CROSS-SECTIONAL VIEW . . . . . . . . . 03-11-1


#### FRONT AXLE OUTLINE

- For vehicles with ABS, the wheel hub component is integrated with the ABS wheel-speed sensor same as the previous models, for improved reliability.
- For the vehicle with DSC, the wheel hub component is not integrated with the ABS wheel-speed sensor.


#### FRONT AXLE CROSS-SECTIONAL VIEW

id031100100200

03-11



ar8uun00000153



ar8uun00000367

# **BRAKES**

04 SECTION

04-00

### **04-00 OUTLINE**

BRAKE ABBREVIATIONS......04-00-1 BRAKE SPECIFICATIONS.......04-00-2 BRAKE FEATURES......04-00-1

#### **BRAKE ABBREVIATIONS**

id040000100100

| ABS | Antilock Brake System              |
|-----|------------------------------------|
| AT  | Automatic Transmission             |
| CAN | Controller Area Network            |
| CM  | Control Module                     |
| DSC | Dynamic Stability Control          |
| EBD | Electronic Brakeforce Distribution |
| HU  | Hydraulic Unit                     |
| IG  | Ignition                           |
| LED | Light Emitting Diode               |
| LF  | Left Front                         |
| LR  | Left Rear                          |
| PID | Parameter Identification           |
| RF  | Right Front                        |
| RR  | Right Rear                         |
| SW  | Switch                             |
| TCS | Traction Control System            |

#### **BRAKE FEATURES**

id040000100200

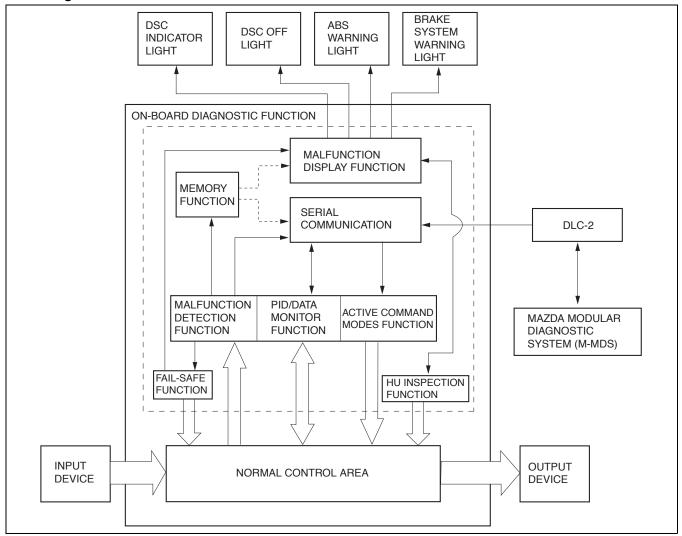
| Improved braking force    | 17-inch front brakes has been adopted on all vehicles                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Improved reliability      | <ul> <li>The Dynamic stability control (DSC) hydraulic unit (HU) /control module (CM) has been changed</li> <li>Magnetic encoder type front ABS sensor rotor adopted (Vehicles with DSC)</li> <li>Semi-conductor element type ABS wheel-speed sensor adopted (Vehicles with DSC)</li> <li>DSC HU/CM with built-in brake fluid pressure sensor (Vehicles with DSC)</li> <li>Specialized CAN communication adopted for communications between the combined sensor and the DSC HU/CM (Vehicles with DSC)</li> </ul> |  |  |
| Size and weight reduction | <ul> <li>Integrated construction of the front wheel hub component and front ABS sensor rotor adopted<br/>(Vehicles with DSC)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                          |  |  |

### **OUTLINE**

#### **BRAKE SPECIFICATIONS**

id040000100300

|                                         | Item                                               |                            | Specification                            |                                                                                               |  |
|-----------------------------------------|----------------------------------------------------|----------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------|--|
|                                         | item                                               |                            | 2009MY RX-8                              | 2008MY RX-8                                                                                   |  |
|                                         | Туре                                               |                            | Suspended design                         | <b>←</b>                                                                                      |  |
| Brake pedal                             | Pedal lever ratio                                  |                            | 2.8                                      | <b>←</b>                                                                                      |  |
|                                         | Max. stroke                                        | (mm {in})                  | 140 {5.51}                               | <b>←</b>                                                                                      |  |
| Master                                  | Туре                                               |                            | Tandem (plunger type)                    | <b>←</b>                                                                                      |  |
| cylinder                                | Cylinder bore                                      | (mm {in})                  | 22.22 {0.875}                            | <b>←</b>                                                                                      |  |
|                                         | Туре                                               |                            | Ventilated disc                          | <b>←</b>                                                                                      |  |
|                                         | Cylinder bore                                      | (mm {in})                  | 54.0 {2.13}                              | <b>←</b>                                                                                      |  |
| Front brake                             | Pad dimensions (area x thicknown (mm² x m²         | nm {in <sup>2</sup> x in}) | 4,840 x 11 {7.744 x 0.43}                | <b>←</b>                                                                                      |  |
| (disc)                                  | Disc plate dimensions (outer diameter x thickness) | (mm {in})                  | 323 x 24 {12.7 x 0.94}                   | Standard suspension: 303 x 24<br>{11.9 x 0.94}<br>Sport suspension: 323 x 24<br>{12.7 x 0.94} |  |
|                                         | Туре                                               |                            | Ventilated disc                          | <b>←</b>                                                                                      |  |
|                                         | Cylinder bore                                      | (mm {in})                  | 42.85 {1.687}                            | <b>←</b>                                                                                      |  |
| Rear brake (disc)                       | Pad dimensions (area x thicknown (mm² x m²         | nm {in <sup>2</sup> x in}) | 3,330 x 9 {5.328 x 0.4}                  | <b>←</b>                                                                                      |  |
| ()                                      | Disc plate dimensions (outer diameter x thickness) | (mm {in})                  | 302 x 18 {1.9 x 0.71}                    | <b>←</b>                                                                                      |  |
| Power brake unit                        | Туре                                               |                            | Vacuum multiplier<br>Single diaphragm    | <b>←</b>                                                                                      |  |
| uriit                                   | Outer diameter                                     | (mm {in})                  | 274 {10.8}                               | <b>←</b>                                                                                      |  |
| Rear wheel braking force control device | Туре                                               |                            | EBD (Electronic brakeforce distribution) | <b>←</b>                                                                                      |  |
| Parking brake                           | Туре                                               |                            | Mechanical two-rear-wheel control        | <b>←</b>                                                                                      |  |
|                                         | Operation system                                   |                            | Center lever type                        | <b>←</b>                                                                                      |  |
| Brake fluid                             | Туре                                               |                            | SAE J1703, FMVSS 116 DOT3                | <b>←</b>                                                                                      |  |


| ON-BOARD DIAGNOSTIC SYSTEM    |
|-------------------------------|
| ACTIVE COMMAND MODES FUNCTION |
| [DYNAMIC STABILITY CONTROL    |
| (DSC)]04-02-9                 |
| Active Command Modes Table    |
| (Vehicles with DSC)04-02-9    |
| ON-BOARD DIAGNOSTIC SYSTEM    |
| EXTERNAL TESTER               |
| COMMUNICATION FUNCTION        |
| [DYNAMIC STABILITY CONTROL    |
| (DSC)]04-02-9                 |
| Serial communication          |
| DLC-2 CONSTRUCTION            |
| [DYNAMIC STABILITY CONTROL    |
| (DSC)]04-02-10                |
| ·                             |
|                               |

#### ON-BOARD DIAGNOSTIC SYSTEM OUTLINE [DYNAMIC STABILITY CONTROL (DSC)]

id0402b2175000

- The on-board diagnostic system consists of a malfunction detection system that detects malfunctions in input/ output signals when the ignition is switched to ON, a PID/data monitor function that reads out specified input/ output signals, and a active command modes function that allows for override operation of output parts (such as solenoid valves).
- The data link connector 2 (DLC-2), which groups together all the connectors used for malfunction diagnosis and detecting/repair into a single location, has been adopted, thereby improving serviceability. Diagnosis is performed by connecting the Mazda modular diagnostic system (M-MDS) to the DLC-2.
- In addition to DTC read-out, the Mazda modular diagnostic system (M-MDS) is used to clear DTCs using the
  display screen of the diagnostic tester, and to access the PID/data monitor and active command modes
  functions, providing enhanced malfunction diagnosis and improved serviceability.

#### **Block diagram**



am2zzn0000064

#### ON-BOARD DIAGNOSTIC SYSTEM FUNCTION [DYNAMIC STABILITY CONTROL (DSC)]

id0402b2175100

#### Malfunction detection function

- The malfunction detection function detects and displays malfunctions in the input/output signal system of the DSC HU/CM when the ignition switch is at the ON position.
- When the DSC HU/CM is activated, the following malfunction detection is performed.
  - The ABS and brake system warning lights, DSC indicator lights and DSC OFF light illuminate for approx. 3 s when the ignition switch is turned to the ON position. At the same time, the fail-safe relay is operated, and the input/output signals of each part is monitored for malfunction diagnosis. After starting to drive, the first time the vehicle speed is approx. 10 km/h {6.2 mph} or more the pump motor is operated and malfunction diagnosis is performed again. Input/output signals are monitored for malfunction determination when the ignition is switched to ON.
- If the above malfunctions are detected, the corresponding lights are illuminated to alert the driver. DTCs can be
  output through the CAN\_H and CAN\_L of the DLC-2 using the external tester communication function. At the
  same time, malfunction detection results are sent to the memory and fail-safe functions.

#### **Memory function**

- The memory function stores DTCs of malfunctions in input/output signal systems. With this function, once a
  DTC is stored it is not cleared after the ignition switch has been turned off (LOCK position), even if the
  malfunctioning signal system has returned to normal.
- Since the DSC HU/CM has a built-in non-volatile memory, DTCs are not cleared even if the battery is removed.
   Therefore, it is necessary to clear the memory after performing repairs. Refer to the Workshop Manual for the DTC clearing procedure.

#### **Fail-safe Function**

When the malfunction detection function determines a malfunction, each light illuminates to advise the driver.
 At this time, the fail-safe function controls the ABS, EBD, TCS and DSC as shown in the fail-safe function malfunction contents table.

#### Warning

 If EBD control is prohibited the rear wheels could lock-up before the front wheels. If this occurs, the vehicle could yaw and become unstable. Therefore always inspect the system immediately if EBD control is prohibited.

#### **Fail-safe Function Malfunction Contents**

|                             | DTC                                                            |                             | Fail-safe function                                                               |                           |                    |                  |                          |                  |                   |                     |
|-----------------------------|----------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------|---------------------------|--------------------|------------------|--------------------------|------------------|-------------------|---------------------|
|                             | number                                                         | Warr                        | ning light illu                                                                  | umination s               | tatus              |                  | Co                       | ntrol stat       | us                |                     |
| Malfunction<br>location     | Mazda<br>Modular<br>Diagnostic<br>System<br>(M-MDS)<br>display | ABS<br>warning<br>light     | Brake<br>system<br>warning<br>light<br>(when<br>parking<br>brake is<br>released) | DSC<br>indicator<br>light | DSC OFF<br>light   | ABS<br>control   | EBD<br>control           | Brake control    | Engine<br>control | DSC<br>control      |
| Power                       | B1317                                                          | Illuminated                 | Illuminated                                                                      | Illuminated               |                    | Control disabled | Control disabled         | Control disabled | Control disabled  | Control disabled    |
| supply<br>system            | B1318                                                          | Illuminated<br>*1           | Not illuminated                                                                  | Illuminated<br>*1         | Not<br>illuminated | Control disabled | Control<br>enabled<br>*4 | Control disabled | Control disabled  | Control disabled *3 |
| DSC HU/CM<br>system         | B1342                                                          | Illuminated                 | Illuminated                                                                      | Illuminated               | Not illuminated    | Control disabled | Control disabled         | Control disabled | Control disabled  | Control disabled    |
| Brake switch                | B1484                                                          | Illuminated<br>*5           |                                                                                  |                           | Not                | Control          | Control                  | Control          | Control           | Control disabled    |
| Brake switch system         | C1954                                                          |                             |                                                                                  | Illuminated               | illuminated        | disabled<br>*6   | enabled                  | disabled<br>*6   | disabled<br>*6    |                     |
| DSC HU/CM configuration     | B2477                                                          | Illuminated<br>*7           | Not<br>illuminated                                                               | Illuminated<br>*7         | Not illuminated    | Control disabled | Control enabled          | Control disabled | Control disabled  | Control disabled    |
| Combined                    | ned B2741                                                      | Not                         | Not                                                                              | Not                       | Control            | Control          | Control                  | Control          | Control           |                     |
| sensor<br>system            | C2768<br>U2516                                                 | Not<br>illuminated          | illuminated                                                                      | Illuminated               | illuminated        | enabled          | enabled                  | disabled<br>*8   | disabled<br>*8    | disabled            |
| DSC OFF<br>switch<br>system | C1093                                                          | Not illuminated             | Not<br>illuminated                                                               | Illuminated               | Illuminated        | Control enabled  | Control enabled          | Control disabled | Control disabled  | Control disabled    |
| Pump motor,                 | C1095                                                          |                             |                                                                                  |                           | Not                | Control          | Control                  | Control          | Control           | Control             |
| motor relay systems         | C1096                                                          | Illuminated                 | Illuminated                                                                      | Illuminated               | illuminated        | disabled         | enabled                  | disabled         | disabled          | disabled            |
| LF ABS sensor rotor         | C1141                                                          |                             |                                                                                  |                           |                    |                  |                          |                  |                   |                     |
| RF ABS sensor rotor         | C1142                                                          | Illuminated Not illuminated | Illuminated                                                                      | Not                       | Control disabled   | Control          | Control                  | Control          | Control           |                     |
| LR ABS sensor rotor         | C1143                                                          |                             | illuminated                                                                      | Illuminated               | illuminated        | *9               | enabled                  | disabled         | disabled          | disabled            |
| RR ABS sensor rotor         | C1144                                                          |                             |                                                                                  |                           |                    |                  |                          |                  |                   |                     |

|                                                                | DTC                                                            |                                   |                                                                                  |                           | Fail-safe          | function                  |                    |                     |                     |                     |  |  |
|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------|---------------------------|--------------------|---------------------------|--------------------|---------------------|---------------------|---------------------|--|--|
|                                                                | number                                                         | Warning light illumination status |                                                                                  |                           |                    | Control status            |                    |                     |                     |                     |  |  |
| Malfunction<br>location                                        | Mazda<br>Modular<br>Diagnostic<br>System<br>(M-MDS)<br>display | ABS<br>warning<br>light           | Brake<br>system<br>warning<br>light<br>(when<br>parking<br>brake is<br>released) | DSC<br>indicator<br>light | DSC OFF<br>light   | ABS<br>control            | EBD<br>control     | Brake control       | Engine<br>control   | DSC<br>control      |  |  |
| RF ABS<br>wheel-speed<br>sensor<br>system                      | C1145                                                          | Illuminated                       |                                                                                  |                           |                    |                           |                    |                     |                     |                     |  |  |
| LF ABS<br>wheel-speed<br>sensor<br>system                      | C1155                                                          |                                   | Not                                                                              | Illuminated               | Not<br>illuminated | Control<br>disabled<br>*9 | Control<br>enabled | Control<br>disabled | Control<br>disabled | Control disabled    |  |  |
| RR ABS<br>wheel-speed<br>sensor<br>system                      | C1165                                                          | illuminateu                       | illuminated                                                                      | uminated illuminated      |                    |                           |                    |                     |                     |                     |  |  |
| LR ABS<br>wheel-speed<br>sensor<br>system                      | C1175                                                          |                                   |                                                                                  |                           |                    |                           |                    |                     |                     |                     |  |  |
| RF ABS<br>wheel-speed<br>sensor/ABS<br>sensor rotor<br>systems | C1148                                                          |                                   |                                                                                  |                           |                    | Control                   |                    | Control<br>disabled | Control             | Control<br>disabled |  |  |
| LF ABS<br>wheel-speed<br>sensor/ABS<br>sensor rotor<br>systems | C1158                                                          | Illuminated                       | Not                                                                              |                           | Not                |                           | Control enabled    |                     |                     |                     |  |  |
| RR ABS<br>wheel-speed<br>sensor/ABS<br>sensor rotor<br>systems | C1168                                                          | illuminateu                       | illuminated                                                                      | Illuminated               | illuminated        | disabled<br>*9            |                    |                     | disabled            |                     |  |  |
| LR ABS<br>wheel-speed<br>sensor/ABS<br>sensor rotor<br>systems | C1178                                                          |                                   |                                                                                  |                           |                    |                           |                    |                     |                     |                     |  |  |
| Valve relay                                                    | C1186                                                          |                                   | Illuminated                                                                      |                           | Not                | Control                   | Control disabled   | Control             | Control             | Control Control     |  |  |
| Valve relay system                                             | C1266                                                          | Illuminated                       | Not illuminated                                                                  | Illuminated               | illuminated        | disabled                  | Control enabled    | disabled            | disabled            | disabled            |  |  |

### 04-02

|                                                        | DTC                                                            |                         |                                                                                  |                           | Fail-safe        | function         |                     |                  |                   |                  |
|--------------------------------------------------------|----------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------|---------------------------|------------------|------------------|---------------------|------------------|-------------------|------------------|
|                                                        | number                                                         | Warr                    |                                                                                  | umination s               | tatus            |                  | Co                  | ntrol stat       |                   |                  |
| Malfunction<br>location                                | Mazda<br>Modular<br>Diagnostic<br>System<br>(M-MDS)<br>display | ABS<br>warning<br>light | Brake<br>system<br>warning<br>light<br>(when<br>parking<br>brake is<br>released) | DSC<br>indicator<br>light | DSC OFF<br>light | ABS<br>control   | EBD<br>control      | Brake control    | Engine<br>control | DSC<br>control   |
| LF outlet<br>solenoid<br>valve<br>system               | C1194                                                          |                         |                                                                                  |                           |                  |                  |                     |                  |                   |                  |
| LF inlet<br>solenoid<br>valve<br>system                | C1198                                                          |                         |                                                                                  |                           |                  |                  |                     |                  |                   |                  |
| RF outlet<br>solenoid<br>valve<br>system               | C1210                                                          |                         |                                                                                  |                           |                  |                  |                     |                  |                   |                  |
| RF inlet<br>solenoid<br>valve<br>system                | C1214                                                          |                         |                                                                                  |                           |                  |                  |                     |                  |                   |                  |
| LR outlet<br>solenoid<br>valve<br>system               | C1242                                                          |                         |                                                                                  |                           |                  |                  |                     |                  |                   |                  |
| RR outlet<br>solenoid<br>valve<br>system               | C1246                                                          |                         |                                                                                  |                           |                  |                  |                     |                  |                   |                  |
| LR inlet<br>solenoid<br>valve<br>system                | C1250                                                          | Illuminated             | Illuminated                                                                      | Illuminated               | Not illuminated  | Control disabled | Control<br>disabled | Control disabled | Control disabled  | Control disabled |
| RR inlet<br>solenoid<br>valve<br>system                | C1254                                                          |                         |                                                                                  |                           |                  |                  |                     |                  |                   |                  |
| RH traction<br>control<br>solenoid<br>valve<br>system  | C1400                                                          |                         |                                                                                  |                           |                  |                  |                     |                  |                   |                  |
| LH traction<br>control<br>solenoid<br>valve<br>system  | C1410                                                          |                         |                                                                                  |                           |                  |                  |                     |                  |                   |                  |
| RH stability<br>control<br>solenoid<br>valve<br>system | C1957                                                          |                         |                                                                                  |                           |                  |                  |                     |                  |                   |                  |
| LH stability<br>control<br>solenoid<br>valve<br>system | C1958                                                          |                         |                                                                                  |                           |                  |                  |                     |                  |                   |                  |

|                                                           | DTC                                                            |                         |                                                       |                           | Fail-safe          | function                   |                            |                               |                               |                            |
|-----------------------------------------------------------|----------------------------------------------------------------|-------------------------|-------------------------------------------------------|---------------------------|--------------------|----------------------------|----------------------------|-------------------------------|-------------------------------|----------------------------|
|                                                           | number                                                         | Warr                    | ning light illu                                       | umination st              | tatus              |                            | Co                         | ntrol stat                    | us                            |                            |
|                                                           |                                                                |                         | Brake                                                 |                           |                    |                            |                            | TCS c                         | ontrol                        |                            |
| Malfunction<br>location                                   | Mazda<br>Modular<br>Diagnostic<br>System<br>(M-MDS)<br>display | ABS<br>warning<br>light | system warning light (when parking brake is released) | DSC<br>indicator<br>light | DSC OFF<br>light   | ABS<br>control             | EBD<br>control             | Brake<br>control              | Engine<br>control             | DSC<br>control             |
| ABS wheel-<br>speed<br>sensor (slip<br>monitor)<br>system | C1222                                                          | Illuminated             | Illuminated<br>*10                                    | Illuminated               | Not<br>illuminated | Control<br>disabled<br>*11 | Control<br>disabled<br>*12 | Control<br>disabled           | Control<br>disabled           | Control<br>disabled        |
| LF ABS<br>wheel-speed<br>sensor<br>system                 | C1233                                                          |                         |                                                       |                           |                    |                            |                            |                               |                               |                            |
| RF ABS<br>wheel-speed<br>sensor<br>system                 | C1234                                                          | Illuminated             | Not<br>illuminated                                    | Illuminated               | Not<br>illuminated | Control<br>disabled<br>*9  | Control<br>enabled         | Control disabled              |                               | Control                    |
| RR ABS<br>wheel-speed<br>sensor<br>system                 | C1235                                                          | illuminateu             |                                                       |                           |                    |                            |                            |                               |                               | disabled                   |
| LR ABS<br>wheel-speed<br>sensor<br>system                 | C1236                                                          |                         |                                                       |                           |                    |                            |                            |                               |                               |                            |
|                                                           | C1279                                                          |                         |                                                       | Illuminated               |                    | Control<br>enabled         |                            | Control<br>disabled<br>*8     | Control disabled *8           | Control disabled           |
|                                                           | C1280                                                          |                         |                                                       | Illuminated<br>*13        | Not<br>illuminated |                            |                            | Control<br>disabled<br>*8, 14 | Control<br>disabled<br>*8, 14 | Control<br>disabled<br>*14 |
| Combined sensor system                                    | C1281                                                          | Not illuminated         | Not illuminated                                       | Illuminated               |                    |                            | Control<br>enabled         | Control disabled              | Control disabled              | Control<br>disabled        |
|                                                           | C1952                                                          |                         |                                                       | Illuminated<br>*15        |                    |                            |                            | Control<br>disabled<br>*8, 16 | Control<br>disabled<br>*8, 16 |                            |
|                                                           | C1959                                                          |                         |                                                       | Illuminated               |                    |                            |                            | Control disabled              | Control disabled              |                            |
| Brake fluid                                               | C1290                                                          |                         |                                                       |                           |                    | Control                    |                            | Control                       | Control                       |                            |
| pressure<br>sensor<br>system                              | C1953                                                          | Illuminated<br>*17      | Not<br>illuminated                                    | Illuminated               | Not illuminated    | disabled<br>*9             | Control enabled            | disabled<br>*8                |                               | Control disabled           |
|                                                           | C1295                                                          |                         |                                                       |                           |                    |                            |                            | Control                       | Control                       | 0                          |
|                                                           | C1307                                                          |                         |                                                       | Illuminated               |                    |                            |                            | disabled                      | disabled                      | Control disabled           |
| Steering                                                  | C1937                                                          |                         |                                                       |                           |                    |                            |                            | *8                            | *8                            |                            |
| angle<br>sensor<br>system                                 | C1938                                                          | Not<br>illuminated      | Not<br>illuminated                                    | Illuminated<br>*13        | Not<br>illuminated | Control<br>enabled         | Control<br>enabled         | Control<br>disabled<br>*8, 14 | Control<br>disabled<br>*8, 14 | Control<br>disabled<br>*14 |
| system                                                    | C1956                                                          |                         |                                                       | Illuminated               |                    |                            |                            | Control<br>disabled<br>*8     | Control<br>disabled<br>*8     | Control disabled           |

|                                                                       | DTC                                                            |                         |                                                       |                           | Fail-safe          | safe function      |                    |                           |                           |                  |
|-----------------------------------------------------------------------|----------------------------------------------------------------|-------------------------|-------------------------------------------------------|---------------------------|--------------------|--------------------|--------------------|---------------------------|---------------------------|------------------|
|                                                                       | number                                                         | Warr                    | Warning light illumination status                     |                           |                    |                    | Control status     |                           |                           |                  |
|                                                                       |                                                                | Brake                   |                                                       |                           |                    |                    |                    | TCS control               |                           |                  |
| Malfunction<br>location                                               | Mazda<br>Modular<br>Diagnostic<br>System<br>(M-MDS)<br>display | ABS<br>warning<br>light | system warning light (when parking brake is released) | DSC<br>indicator<br>light | DSC OFF<br>light   | ABS<br>control     | EBD<br>control     | Brake<br>control          | Engine<br>control         | DSC<br>control   |
| Steering<br>angle<br>sensor<br>(abnormal<br>initialization)<br>system | C1306                                                          | Not<br>illuminated      | Not<br>illuminated                                    | Illuminated               | Flash              | Control<br>enabled | Control<br>enabled | Control<br>disabled<br>*8 | Control<br>disabled<br>*8 | Control disabled |
| DSC control system                                                    | C1994                                                          | Illuminated             | Not illuminated                                       | Illuminated               | Not illuminated    | Control disabled   | Control enabled    | Control disabled          | Control disabled          | Control disabled |
|                                                                       | U0073                                                          |                         |                                                       |                           |                    |                    |                    |                           |                           | Control          |
|                                                                       | U0100                                                          |                         |                                                       |                           |                    |                    |                    |                           |                           |                  |
| CAN<br>communicati                                                    | U0101                                                          | Not                     | Not                                                   | Illuminated               | Not                | Control            | Control            | Control                   | Control                   |                  |
| on system                                                             | U0155                                                          | illuminated             | illuminated                                           | marmiatea                 | illuminated        | enabled            | enabled            | disabled                  | disabled                  | disabled         |
| j                                                                     | U1900                                                          |                         |                                                       |                           |                    |                    |                    |                           |                           |                  |
|                                                                       | U2023                                                          |                         |                                                       |                           |                    |                    |                    |                           |                           |                  |
| CAN2                                                                  | U0074                                                          | Not                     | Not                                                   |                           | Not                | Control            | Control            | Control                   | Control                   | Control          |
| communicati                                                           | U0123                                                          | illuminated             | Not<br>illuminated                                    | Illuminated               | Not<br>illuminated | Control enabled    | Control<br>enabled | disabled<br>*8            | disabled<br>*8            | Control disabled |
| on system                                                             | U1901                                                          | iliuminated             |                                                       |                           |                    |                    |                    | 0                         | 0                         |                  |

- \*1 : If the ignition voltage returns to normal, the light turns off.
- <sup>\*2</sup>: If the ignition voltage is **less than 7.6 V**, the light illuminates. Afterwards, if the ignition voltage returns to normal, the light turns off.
- \*3: If the ignition voltage returns to normal, control is enabled.
- \*4 : If the ignition voltage is less than 7.6 V, control is disabled. Afterwards, if the ignition voltage returns to normal, control is enabled.
- \*5 : If an error is detected during the ABS/TCS control, the light illuminates after finishing the control.
- \*6: If an error is detected during the ABS/TCS control, the control is disabled after finishing the control.
- <sup>\*7</sup>: If the configuration data is not within the specification, the light flashes.
- \*8 : If an error is detected during the TCS control, the control is disabled after finishing the control.
- \*9 : If an error is detected during the ABS control, the control is disabled after finishing the control.
- \*10 : If an abnormal cornering direction is detected, the light does not illuminate.
- \*11 : If an abnormal cornering direction is detected during the ABS control, the control is disabled after finishing the control.
- \*12: If an abnormal cornering direction is detected, the control is not disabled.
- \*13: When an abnormal cornering direction is detected, the light turns off if the normal condition is verified the next time the system is activated.
- \*14: When an abnormal cornering direction is detected, control is enabled if the normal condition is verified the next time the system is activated.
- \*15: If the system returns to normal, the light turns off. However, if another error is detected within **180 s**, the light remains illuminated until the ignition switch is turned off.
- \*16: If the system returns to normal, control is enabled. However, if another error is detected within **180 s**, control is disabled until the ignition switch is turned off.
- \*17: If an error is detected during the ABS control, the light illuminates after finishing the control.

# ON-BOARD DIAGNOSTIC SYSTEM PID/DATA MONITOR FUNCTION [DYNAMIC STABILITY CONTROL (DSC)]

• The PID/data monitor function is used for optionally selecting input/output signal monitor items preset in the DSC HU/CM and reading them out in real-time.

#### **PID/DATA Monitor Table**

| PID/data monitor item | Input/output part                   | Unit/Condition<br>(Tester display) |
|-----------------------|-------------------------------------|------------------------------------|
| ABS_VOLT              | Battery                             | V                                  |
| ABSLF_I               | LF inlet solenoid valve             | Off/On                             |
| ABSLF_O               | LF outlet solenoid valve            | Off/On                             |
| ABSLR_I               | LR inlet solenoid valve             | Off/On                             |
| ABSLR_O               | LR outlet solenoid valve            | Off/On                             |
| ABSPMPRLY             | Pump motor relay                    | Off/On                             |
| ABSRF_I               | RF inlet solenoid valve             | Off/On                             |
| ABSRF_O               | RF outlet solenoid valve            | Off/On                             |
| ABSRR_I               | RR inlet solenoid valve             | Off/On                             |
| ABSRR_O               | RR outlet solenoid valve            | Off/On                             |
| ABSVLVRLY             | Valve control relay                 | Off/On                             |
| BOO_ABS               | Brake switch                        | Off/On                             |
| CCNTABS               | Number of continuous DTCs           | _                                  |
| LAT_ACCL              | Combined sensor (lateral-G value)   | G                                  |
| LF_WSPD               | LF ABS wheel-speed sensor           | KPH, MPH                           |
| LR_WSPD               | LR ABS wheel-speed sensor           | KPH, MPH                           |
| MCYLI P               | Brake fluid pressure sensor         | Pa, psi                            |
| PMP_MOTOR             | Pump motor                          | Off/On                             |
| RF_WSPD               | RF ABS wheel-speed sensor           | KPH, MPH                           |
| RPM                   | PCM (engine speed)                  | RPM                                |
| RR_WSPD               | RR ABS wheel-speed sensor           | KPH, MPH                           |
| SWA_POS               | Steering angle sensor               | o                                  |
| TPI                   | PCM (throttle opening angle)        | %                                  |
| V_STB_L               | LH stability control solenoid valve | Off/On                             |
| V_STB_R               | RH stability control solenoid valve | Off/On                             |
| V_TRC_L               | LH traction control solenoid valve  | Off/On                             |
| V_TRC_R               | RH traction control solenoid valve  | Off/On                             |
| YAW_RATE              | Combined sensor (yaw rate value)    | °/s                                |

### 04-02

### ON-BOARD DIAGNOSTIC [DYNAMIC STABILITY CONTROL (DSC)]

# ON-BOARD DIAGNOSTIC SYSTEM ACTIVE COMMAND MODES FUNCTION [DYNAMIC STABILITY CONTROL (DSC)]

id0402b2175300

- The active command modes function is used for optionally selecting active command modes items of input/output parts preset in the DSC HU/CM, and to operate them regardless of CM control.
- To protect the hydraulic unit interior, operate output related parts for only 10 s or less when using the active command modes function.

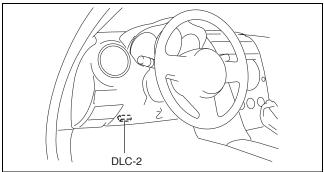
#### **Active Command Modes Table (Vehicles with DSC)**

| Command name | Output part name                                      | Operation  | Operation condition |
|--------------|-------------------------------------------------------|------------|---------------------|
| LATACCEL     | Combined sensor (lateral acceleration) initialization | FALSE/TRUE |                     |
| LF_INLET     | LF inlet solenoid valve                               |            |                     |
| LF_OUTLET    | LF outlet solenoid valve                              |            |                     |
| LR_INLET     | LR inlet solenoid valve                               |            |                     |
| LR_OUTLET    | LR outlet solenoid valve                              |            |                     |
| PMP_MOTOR    | Pump motor                                            | Off/On     |                     |
| RF_INLET     | RF inlet solenoid valve                               |            |                     |
| RF_OUTLET    | RF outlet solenoid valve                              |            |                     |
| RR_INLET     | RR inlet solenoid valve                               |            | Ignition switch at  |
| RR_OUTLET    | RR outlet solenoid valve                              |            | ON                  |
| SAS_CAL      | Steering angle sensor initialization                  | FALSE/TRUE |                     |
| STAB_IND     | DSC indicator light                                   |            |                     |
| TRAC_OFF     | DSC OFF switch                                        |            |                     |
| V_STB_L      | LH stability control solenoid valve                   |            |                     |
| V_STB_R      | RH stability control solenoid valve                   | Off/On     |                     |
| V_TRC_L      | LH traction control solenoid valve                    |            |                     |
| V_TRC_R      | RH traction control solenoid valve                    | ]          |                     |
| YAWRATE      | Combined sensor (yaw rate) initialization             | ]          |                     |

# ON-BOARD DIAGNOSTIC SYSTEM EXTERNAL TESTER COMMUNICATION FUNCTION [DYNAMIC STABILITY CONTROL (DSC)]

id0402b2821500

• The external tester communication function enables communication of diagnostic data (DTC read-outs, input/output signal read-outs, operation of input/output parts) between the DSC HU/CM and an external tester.

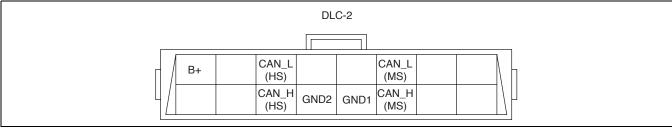

#### **Connections/Communication Contents**

|                                                            | Externa                                        | al tester            |
|------------------------------------------------------------|------------------------------------------------|----------------------|
|                                                            | Mazda Modular Diagn                            | ostic System (M-MDS) |
|                                                            | Connection                                     | Communication method |
| On-board diagnostic<br>(malfunction detection)<br>function | Input/output: CAN_H (HS), CAN_L (HS) terminals | Serial communication |
| PID/data monitor function                                  | Input/output: CAN_H (HS), CAN_L (HS) terminals | Serial communication |
| active command modes function                              | Input/output: CAN_H (HS), CAN_L (HS) terminals | Serial communication |

#### Serial communication

- Serial communication (two-way communication) allows for multiple data to be sent and received instantly along the same line.
- By connecting the Mazda Modular Diagnostic System (M-MDS) to the DLC-2, diagnostic data can be sent and received between the Mazda Modular Diagnostic System (M-MDS) and the DSC HU/CM using the CAN\_H and CAN\_L terminals (within the DLC-2).
- The DSC HU/CM receives the command signals of the malfunction detection function, PID/data monitor function, and the active command modes function based on the Mazda Modular Diagnostic System (M-MDS), and sends DTCs and data regarding the operating condition and status of each input/output part to the Mazda Modular Diagnostic System (M-MDS).

| Diagnostic function name       | Signal received                                                 | Signal sent                               |
|--------------------------------|-----------------------------------------------------------------|-------------------------------------------|
| Malfunction detection function | DTC verification signal                                         | DTC                                       |
|                                | Command signal to read selected monitor item                    | Monitored data for requested monitor item |
|                                | Operation command signal for selected active command modes item | Output part drive signal                  |




ar8uuw00001791

#### DLC-2 CONSTRUCTION [DYNAMIC STABILITY CONTROL (DSC)]

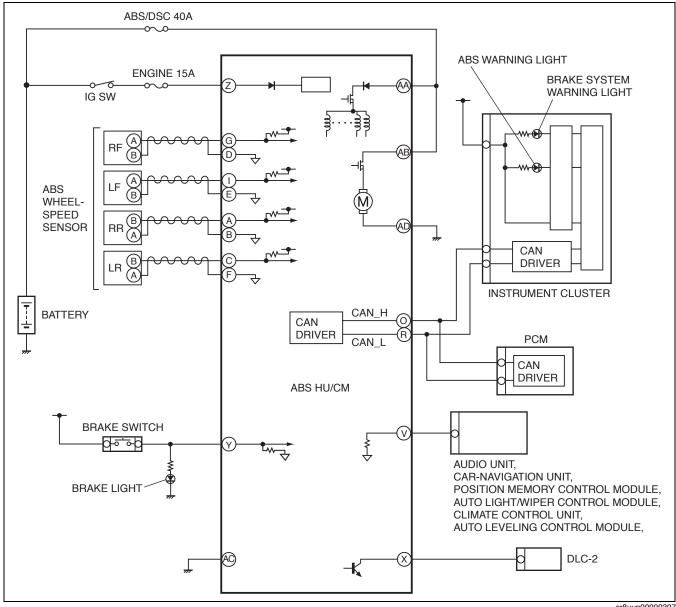
id0402b218080

- A connector (DLC-2) conforming to International Organization for Standardization (ISO) standards has been added.
- Shape and terminal arrangement as stipulated by the ISO 15031-3 (SAE J1962) international standard has been adopted for this connector. The 16-pin connector consists of a CAN\_H (HS) terminal, CAN\_L (HS) terminal, CAN\_H (MS) terminal, CAN\_L (MS) terminal, GND1 terminal, GND2 terminal, and B+ terminal.



am2zzn0000064

| Terminal   | Function                              |
|------------|---------------------------------------|
| CAN_L (HS) | Serial communication Lo terminal (HS) |
| CAN_H (HS) | Serial communication Hi terminal (HS) |
| CAN_L (MS) | Serial communication Lo terminal (MS) |
| CAN_H (MS) | Serial communication Hi terminal (MS) |
| GND1       | Body ground terminal                  |
| GND2       | Serial communication ground terminal  |
| B+         | Battery power supply terminal         |


### 04-13 ANTILOCK BRAKE SYSTEM

ABS OUTLINE id041300183600

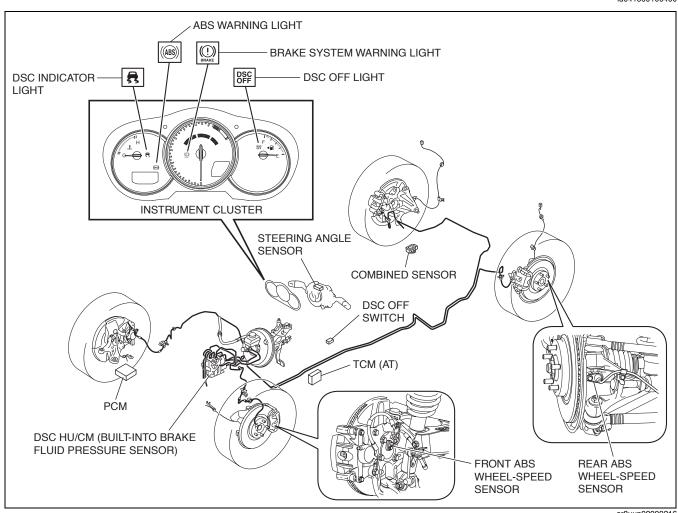
- The hydraulic pressure control mechanism in the ABS hydraulic unit (HU) and the system control strategy and essentially carried over from that of the 2008MY RX-8, except for the following;
  - Name of fuse for ABS system changed
  - Changed brake lights to light emitting diode (LED) type lights

#### **ABS SYSTEM WIRING DIAGRAM**

id041300185000



ar8uun00000307


04-13

# 04-15 DYNAMIC STABILITY CONTROL

| DYNAMIC STABILITY CONTROL (DSC) |          | ABS WHEEL-SPEED SENSOR AND  |           |
|---------------------------------|----------|-----------------------------|-----------|
| STRUCTURAL VIEW                 | 04-15-1  | ABS SENSOR ROTOR FUNCTION   | .04-15-10 |
| DYNAMIC STABILITY CONTROL (DSC) |          | ABS WHEEL-SPEED SENSOR AND  |           |
| CONSTRUCTION                    | 04-15-2  | ABS SENSOR ROTOR            |           |
| DYNAMIC STABILITY CONTROL (DSC) |          | CONSTRUCTION/OPERATION      | .04-15-11 |
| SYSTEM WIRING DIAGRAM           | 04-15-3  | Construction                | .04-15-11 |
| DSC HU/CM CONSTRUCTION          | 04-15-4  | Operation                   | .04-15-12 |
| DSC HU PART                     |          | COMBINED SENSOR             |           |
| CONSTRUCTION/OPERATION          | 04-15-5  | CONSTRUCTION/OPERATION      | .04-15-13 |
| Construction                    | 04-15-5  | BRAKE FLUID PRESSURE SENSOR |           |
| Operation                       | 04-15-6  | CONSTRUCTION                | .04-15-13 |
| TCS CONTROL OUTLINE             | 04-15-10 | STEERING ANGLE SENSOR       |           |
| Features                        | 04-15-10 | FUNCTION                    | .04-15-13 |
| Block Diagram                   | 04-15-10 |                             |           |

#### DYNAMIC STABILITY CONTROL (DSC) STRUCTURAL VIEW

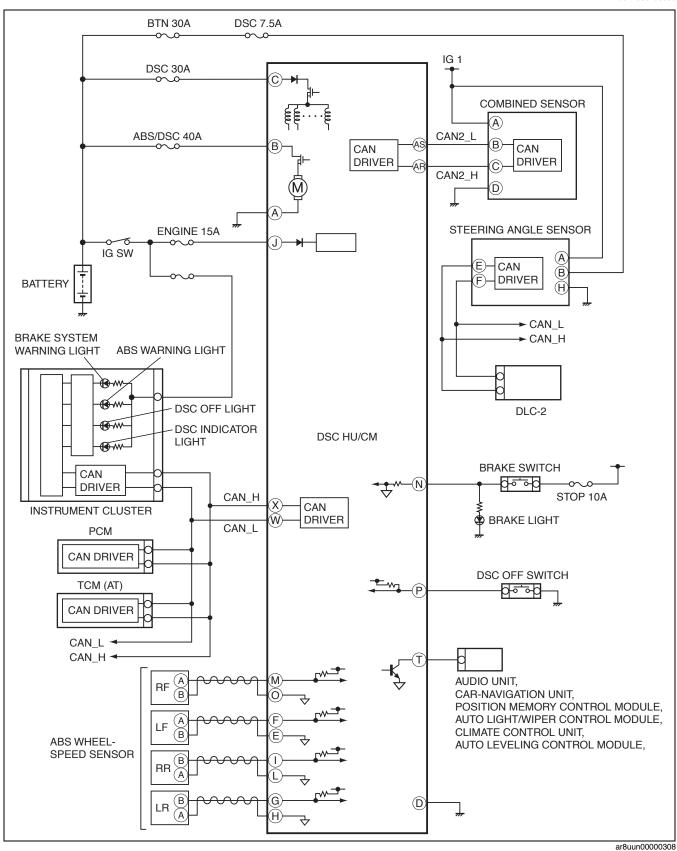
id041500100400



ar8uun00000216

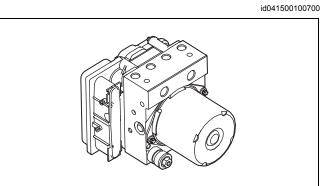
### **DYNAMIC STABILITY CONTROL**

### DYNAMIC STABILITY CONTROL (DSC) CONSTRUCTION


id041500100500

• The DSC system consists of the following parts. While each part has a regular function in other systems, only the function during DSC control is listed.

| Part name                                          | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DSC HU/CM                                          | <ul> <li>Makes calculations using input signals from each sensor, controls brake fluid pressure to each wheel, and actuates each function (ABS, EBD, TCS and DSC) of the DSC system.</li> <li>Outputs the vehicle speed signal to the car-navigation unit.</li> <li>Outputs the torque reduction request signal, vehicle speed signal and DSC system warning control data via CAN lines.</li> <li>Controls the on-board diagnostic system and fail-safe function when there is a malfunction in the DSC system.</li> </ul> |
| PCM                                                | <ul> <li>Controls engine output based on signals from the DSC HU/CM.</li> <li>Transmits engine speed, tire and shift position data via CAN communication to the DSC HU/CM.</li> </ul>                                                                                                                                                                                                                                                                                                                                      |
| TCM (AT)                                           | Transmits gear/selector lever target position data via CAN communication to the DSC HU/CM.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DSC indicator light                                | <ul> <li>Informs the driver that the DSC is operating (vehicle sideslip occurring).</li> <li>Informs the driver that the TCS is operating (drive wheel is spinning).</li> </ul>                                                                                                                                                                                                                                                                                                                                            |
| DSC OFF switch                                     | Transmits driver intention to release DSC control to the DSC HU/CM.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DSC OFF light                                      | Informs driver that DSC control has been released due to DSC OFF switch operation.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Wheel speed sensor                                 | Detects the rotation condition of each wheel and transmits it to the DSC HU/CM.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Combined sensor                                    | Detects the lateral-G (vehicle speed increase) and the yaw rate (vehicle turning angle) of the vehicle and transmits them to the DSC HU/CM.                                                                                                                                                                                                                                                                                                                                                                                |
| Brake fluid pressure sensor (built-into DSC HU/CM) | Detects the fluid pressure from the master cylinder and transmits it to the DSC HU/CM.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Steering angle sensor                              | Transmits the steering angle and steering angle sensor condition via CAN lines to the DSC HU/CM.                                                                                                                                                                                                                                                                                                                                                                                                                           |

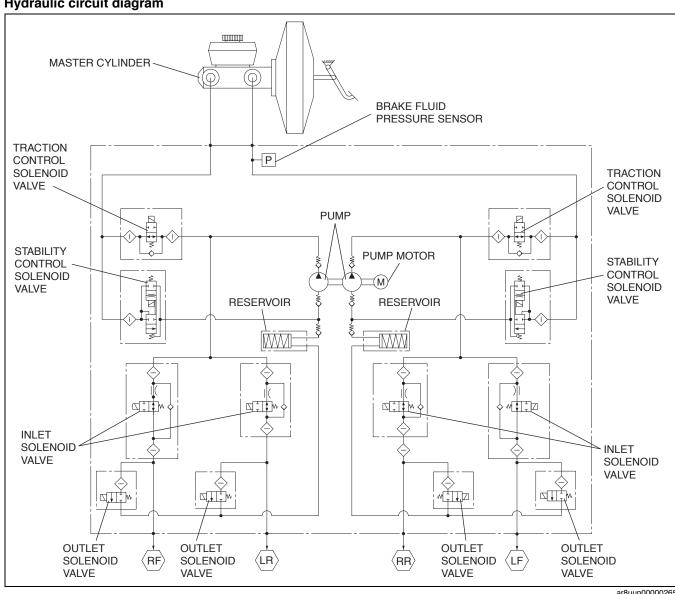

#### DYNAMIC STABILITY CONTROL (DSC) SYSTEM WIRING DIAGRAM

id041500100600



## **DSC HU/CM CONSTRUCTION**

 A high reliability, reduced size and weight DSC HU/CM, integrating both the DSC HU and the DSC CM, has been adopted.




#### Construction

#### **Function of main component parts**

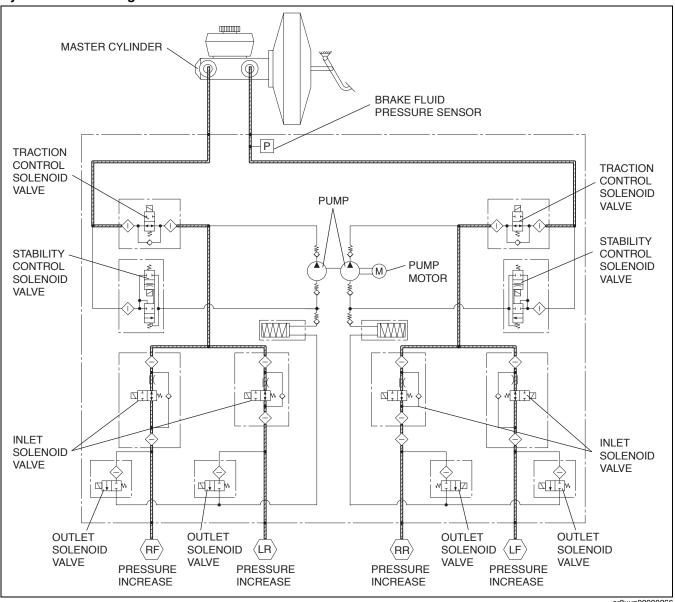
| Part name                        | Function                                                                                                                                                                                                                                        |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inlet solenoid valve             | Adjusts the fluid pressure in each brake system according to DSC HU/CM signals.                                                                                                                                                                 |
| Outlet solenoid valve            | Adjusts the fluid pressure in each brake system according to DSC HU/CM signals.                                                                                                                                                                 |
| Stability control solenoid valve | Switches the brake hydraulic circuits during and according to normal braking,<br>ABS and EBD control, TCS control and DSC control.                                                                                                              |
| Traction control solenoid valve  | Switches the brake hydraulic circuits during and according to normal braking,<br>ABS and EBD control, TCS control and DSC control.                                                                                                              |
| Reservoir                        | Temporarily stores brake fluid from the caliper piston to ensure smooth pressure reduction during ABS and EBD control, TCS control and DSC control.                                                                                             |
| Pump                             | <ul> <li>Returns the brake fluid stored in the reservoir to the master cylinder during ABS and DSC control.</li> <li>Increases brake fluid pressure and sends brake fluid to each caliper piston during TCS control and DSC control.</li> </ul> |
| Pump motor                       | Operates the pump according to DSC HU/CM signals.                                                                                                                                                                                               |

## Hydraulic circuit diagram



ar8uun00000265

#### Operation


#### **During normal braking**

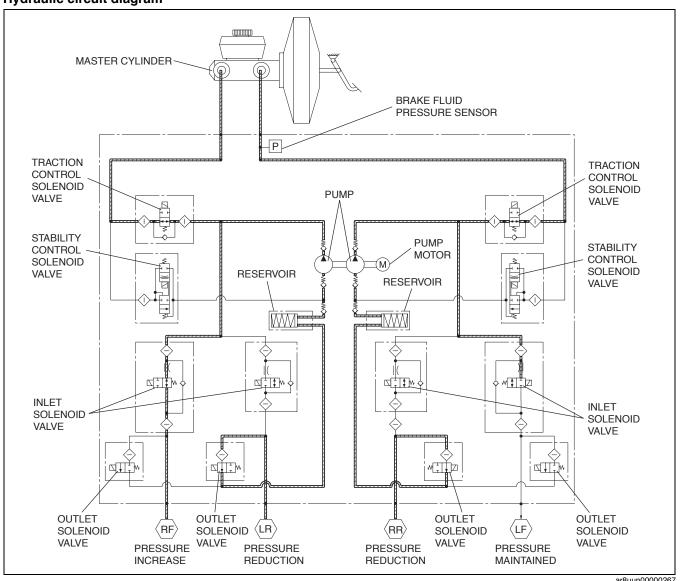
• During normal braking, the solenoid valves are not energized and all of them are off. When the brake pedal is depressed, brake fluid pressure is transmitted from the master cylinder, through the traction switch and inlet solenoid valves, and then to the caliper piston.

**Solenoid Valve Operation Table** 

|       | tion control solenoid valve Stability control solenoid valve |       | Inlet solenoid valve |    |             | Outlet solenoid valve |    |              |    | Pump<br>motor, |      |
|-------|--------------------------------------------------------------|-------|----------------------|----|-------------|-----------------------|----|--------------|----|----------------|------|
| LF-RR | RF-LR                                                        | LF-RR | RF-LR                | LF | LF RF LR RR |                       | LF | RF           | LR | RR             | pump |
| OFF ( | OFF (open)                                                   |       | OFF (closed)         |    | OFF (open)  |                       |    | OFF (closed) |    | Stopped        |      |

#### Hydraulic circuit diagram




#### **During ABS and EBD control**

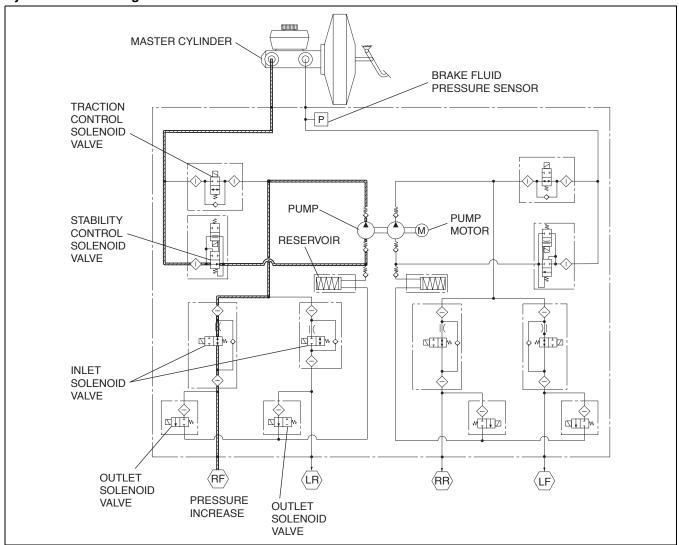
• During ABS and EBD control, when wheel lock-up is about to occur, the traction switch and stability control solenoid valves are not energized, and the inlet and outlet solenoid valves are energized and controlled in three pressure modes (increase, reduction or maintain), thereby adjusting brake fluid pressure. Brake fluid during pressure reduction is temporarily stored in the reservoir and afterwards the pump motor operates the pump to return the fluid to the master cylinder. (The following figure shows these conditions: right front wheel pressure increased, left front wheel pressure maintained, and both rear wheels pressure decreased.)

Solenoid valve operation table

|                                        |       | control<br>id valve |                         | control<br>d valve | inlet solenoid valve Outlet solenoid valve |    | Inlet solenoid valve Outlet solenoid valve |    | Pump<br>motor, |    |    |           |         |
|----------------------------------------|-------|---------------------|-------------------------|--------------------|--------------------------------------------|----|--------------------------------------------|----|----------------|----|----|-----------|---------|
|                                        | LF-RR | RF-LR               | LF-RR                   | RF-LR              | LF                                         | RF | LR                                         | RR | LF             | RF | LR | RR        | pump    |
| During<br>Pressure<br>increase<br>mode | OFF ( | (open)              | OFF (closed) OFF (open) |                    | OFF (closed)                               |    |                                            |    | Stopped        |    |    |           |         |
| During<br>pressure<br>maintain<br>mode | OFF ( | (open)              | OFF (closed)            |                    | ON (closed)                                |    |                                            |    | OFF (closed)   |    |    |           | Stopped |
| During pressure reduction mode         | OFF ( | (open)              | OFF (d                  | closed)            | ON (closed)                                |    | ON (closed)                                |    | ON (open)      |    |    | Operating |         |

#### Hydraulic circuit diagram




#### **During DSC control (suppress oversteer tendency)**

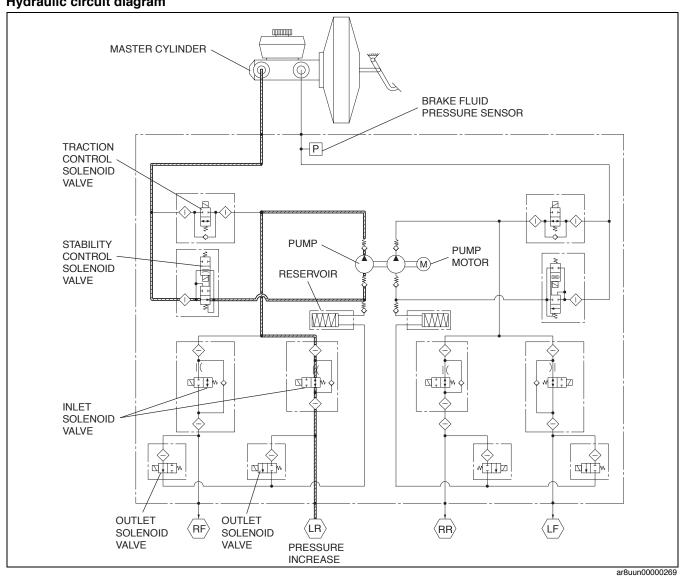
- When a large oversteer tendency is determined, the traction switch and the stability control solenoid valves are
  energized, switching the hydraulic circuits. At the same time, the pump motor is actuated to operate the pump,
  supplying brake fluid pressure from the reservoir to the outer front wheel cylinder. Also at this time, the inlet
  solenoid valve of the inner rear wheel is energized and the hydraulic circuit of this wheel is closed.
- After a pressure increase, brake fluid pressure is adjusted using the three pressure modes (reduction, maintain, increase) so that the target wheel speed is obtained. (The following figure shows a left turn (during pressure increase mode).)

#### Solenoid valve operation table

|                                         | Traction solenoi |                |                 | control<br>d valve | Inle              | Inlet solenoid valve Outlet solenoid valve |                    | Outlet solenoid valve |                     | Pump<br>motor,   |                  |                     |           |  |
|-----------------------------------------|------------------|----------------|-----------------|--------------------|-------------------|--------------------------------------------|--------------------|-----------------------|---------------------|------------------|------------------|---------------------|-----------|--|
|                                         | LF-RR            | RF-LR          | LF-RR           | RF-LR              | LF                | RF                                         | LR                 | RR                    | LF                  | RF               | LR               | RR                  | pump      |  |
| During<br>pressure<br>increase<br>mode  | OFF<br>(open)    | ON<br>(closed) | OFF<br>(closed) | ON<br>(open)       | OFF<br>(ope<br>n) | OFF<br>(ope<br>n)                          | ON<br>(clos<br>ed) | OFF<br>(ope<br>n)     | OI<br>(clos         | F<br>sed)        | ON<br>(ope<br>n) | OFF<br>(clos<br>ed) | Operating |  |
| During<br>pressure<br>maintain<br>mode  | OFF<br>(open)    | ON<br>(closed) | OFF (d          | closed)            | OFF<br>(ope<br>n) | OFF<br>(ope<br>n)                          | ON<br>(clos<br>ed) | OFF<br>(ope<br>n)     | OI<br>(clos         | F<br>sed)        | ON<br>(ope<br>n) | OFF<br>(clos<br>ed) | Operating |  |
| During<br>pressure<br>reduction<br>mode | OFF<br>(open)    | ON<br>(closed) | OFF (d          | closed)            | OFF<br>(ope<br>n) | OFF<br>(ope<br>n)                          | ON<br>(clos<br>ed) | OFF<br>(ope<br>n)     | OFF<br>(clos<br>ed) | ON<br>(ope<br>n) | ON<br>(ope<br>n) | OFF<br>(clos<br>ed) | Operating |  |

#### Hydraulic circuit diagram




#### During DSC control (to suppress understeer tendency) and TCS control

- When a large understeer tendency is determined, the traction switch and the stability control solenoid valves are energized, switching the hydraulic circuits. At the same time, the pump motor is actuated to operate the pump, thereby increasing pressure by supplying brake fluid pressure to the caliper piston of the inner rear wheel or the slipping driving wheel. Also at this time, the inlet solenoid valve of the outer front wheel is energized and the hydraulic circuit of this wheel is closed.
- After a pressure increase, brake fluid pressure is adjusted using the three pressure modes (reduction, maintain, increase) so that the target wheel speed is obtained. (The following figure shows a left turn, or control of left rear wheel spin (during pressure increase mode).)

Solenoid valve operation table

|                                         | Traction control solenoid valve |                | Stability control solenoid valve |              | Inle              | Inlet solenoid valve Outlet s |                    |                   | Outlet solenoid valve |                  | Pump<br>motor,   |                     |           |
|-----------------------------------------|---------------------------------|----------------|----------------------------------|--------------|-------------------|-------------------------------|--------------------|-------------------|-----------------------|------------------|------------------|---------------------|-----------|
|                                         | LF-RR                           | RF-LR          | LF-RR                            | RF-LR        | LF                | RF                            | LR                 | RR                | LF                    | RF               | LR               | RR                  | pump      |
| During<br>pressure<br>increase<br>mode  | OFF<br>(open)                   | ON<br>(closed) | OFF<br>(closed)                  | ON<br>(open) | OFF<br>(ope<br>n) | ON<br>(clos<br>ed)            | OI<br>(op          | FF<br>en)         | OFF<br>(clos<br>ed)   | ON<br>(ope<br>n) | Ol<br>(clos      | FF<br>sed)          | Operating |
| During<br>pressure<br>maintain<br>mode  | OFF<br>(open)                   | ON<br>(closed) | OFF (d                           | closed)      | OFF<br>(ope<br>n) | OFF<br>(clos<br>ed)           | ON<br>(clos<br>ed) | OFF<br>(ope<br>n) | OFF<br>(clos<br>ed)   | ON<br>(ope<br>n) | Ol<br>(clos      | FF<br>sed)          | Operating |
| During<br>pressure<br>reduction<br>mode | OFF<br>(open)                   | ON<br>(closed) | OFF (d                           | closed)      | OFF<br>(ope<br>n) | OFF<br>(clos<br>ed)           | ON<br>(clos<br>ed) | OFF<br>(ope<br>n) | OFF<br>(clos<br>ed)   | ON<br>(ope<br>n) | ON<br>(ope<br>n) | OFF<br>(clos<br>ed) | Operating |

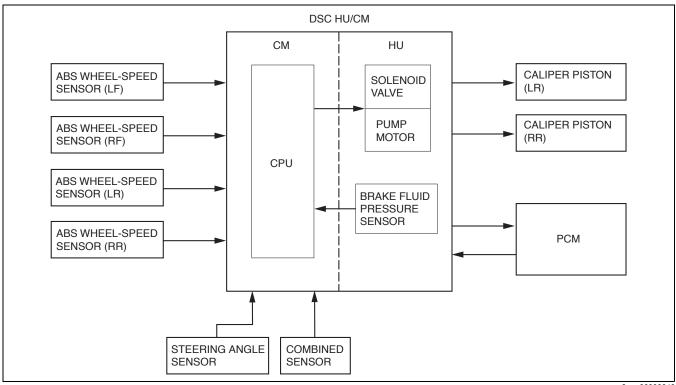
#### Hydraulic circuit diagram



#### **TCS CONTROL OUTLINE**

id041500101300

 TCS control actuates torque reduction through throttle, fuel cut and ignition timing control, as well as using brake control to control traction.


#### Note

 Brake control: Brake fluid pressure from the hydraulic unit to the slipping driving wheel is increased, operating the brake and preventing drive wheel slip.

#### **Features**

The left and right wheels are controlled at the same time by throttle, fuel cut and ignition timing control.
 Therefore, when the road surface friction coefficients differ between the left and right wheels, proper torque reduction cannot be performed separately for each wheel. When this occurs, torque reduction is performed by independent left and right wheel brake control, providing much stable vehicle control.

#### **Block Diagram**



ar8uun00000040

#### ABS WHEEL-SPEED SENSOR AND ABS SENSOR ROTOR FUNCTION

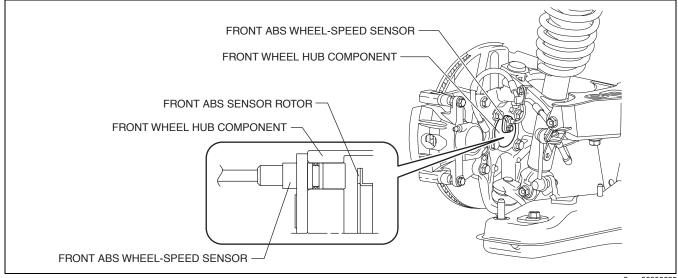
id041500102800

- The ABS wheel-speed sensor detects and transmits the rotation condition of each wheel to the DSC HU/CM.
- The signal from the ABS wheel-speed sensors is the primary signal for DSC HU/CM control.

id041500105000

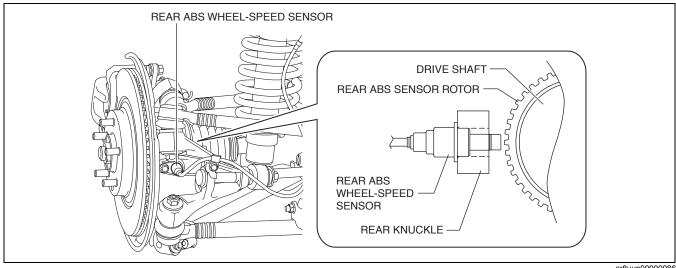
#### Construction

- The ABS wheel speed sensor utilizes a semiconductor element that contains an active drive circuit (Hall element\*). The front sensor is installed on the front wheel hub component and the rear sensor is installed on the rear knuckle.
- The front ABS sensor rotor utilizes a magnetic encoder system that functions with magnetic rubber, and is integrated into the front wheel hub component. Therefore, if there is any malfunction of the front ABS sensor rotor, replace the front wheel hub component.
- The rear ABS sensor rotor is integrated with the drive shaft. Therefore, if there is any malfunction of the rear ABS sensor rotor, replace the drive shaft.
- \*: Hall effect is produced by the Hall element which generates electromotive force in the direction perpendicular to the electrical current and magnetic field when the magnetic field is applied perpendicular to the electrical current.


#### Caution

. When inspecting the ABS wheel speed sensor, do not use a tester to inspect resistance. It is possible that the voltage from the tester could damage the semiconductor inside the ABS wheel speed sensor. Inspect using the PID data monitor of the Mazda Modular Diagnostic System (M-MDS).

#### Note


Magnetic encoder: A plate that has positive and negative poles (marked out) in a continuous, alternating

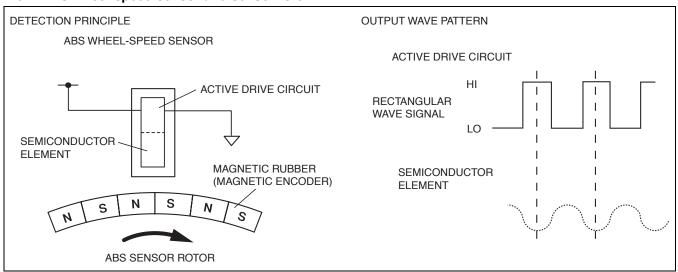
#### Front ABS wheel-speed sensor and sensor rotor



ar8uun00000085

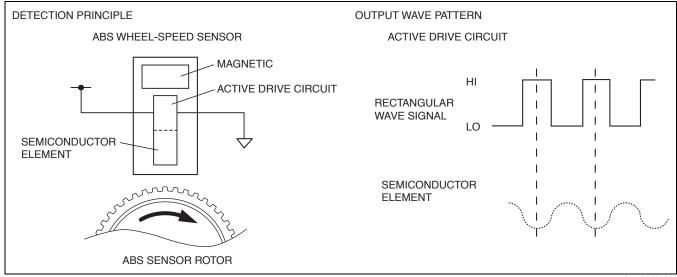
#### Rear ABS wheel-speed sensor and sensor rotor




ar8uun00000086

04-15-11

#### Operation

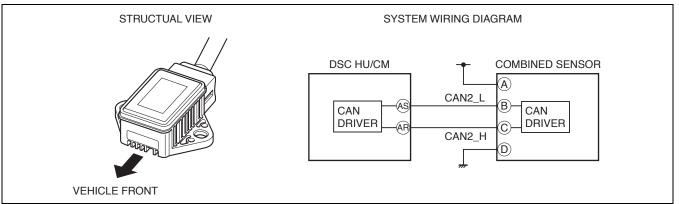

- As the ABS sensor rotor rotates, the magnetic flux between the ABS wheel speed sensor and the ABS sensor rotor change periodically. This periodic change is in proportion to the rotation speed.
- The semiconductor element in the wheel speed sensor detects the change in magnetic flux, and the active drive circuit converts it to a rectangular wave signal for the current, which is transmitted to the DSC HU/CM.
- For every single rotation of the ABS sensor rotor, 44 rectangular wave pulse signals are output. The CM in the DSC HU/CM calculates the wheel speed from the periodicity of these pulses.

#### Front ABS wheel-speed sensor and sensor rotor



#### ar8uun00000362

#### Rear ABS wheel-speed sensor and sensor rotor




id041500101900

- The combined sensor, which integrates the yaw rate and lateral-G sensors, detects and calculates the vehicle
  yaw and lateral-G rates, and transmits them to the DSC HU/CM via special CAN lines between the sensor and
  module.
- The yaw rate sensor detects Coriolis force in proportion to the rotation speed of the rotating detection area when rotation is applied to it.
- The lateral-G sensor detects an inertial force created by, and in proportion to, a G-force acting on a silicon detection component.

#### Note

• Coriolis force: When an object on a rotating disc attempts to move toward the center of the disc, force is produced at a right angle to the intended path of travel of the object. This results in the direction of movement being unchanged from its original point of departure, and the object does not reach the center. When looking at this effect from outside the disc, it appears as if a force is deflecting the object away from the center. This appearance of force is called a Coriolis force, and the object actually advances in a straight course.



ar8uun00000041

#### BRAKE FLUID PRESSURE SENSOR CONSTRUCTION

id041500102100

 The brake fluid pressure sensor is built into the DSC HU/CM. Therefore if there is any malfunction of the brake fluid pressure sensor, replace the DSC HU/CM.

#### STEERING ANGLE SENSOR FUNCTION

id041500102400

 The steering angle sensor, located on the combination switch, detects the steering angle degree and the neutral position, and transmits these to the DSC HU/CM via CAN lines.

#### Warning

- The following circumstances will cause the stored initialization value of the steering angle sensor
  to be cleared. This may possibly cause an accident due to the DSC becoming inoperative. Always
  refer to the Workshop Manual and properly perform the initialization procedure for the steering
  angle sensor so that the DSC operates properly.
  - Negative battery cable disconnected
  - Steering angle sensor connector disconnected
  - Fuse (BTN 30 A) removed
  - Fuse (DSC 7.5 A) removed

#### Note

• If the initialization procedure for the steering angle sensor has not been performed, when the ignition switch is turned to the ON position, the DSC indicator light illuminates and the DSC OFF light flashes to warn of a malfunction.

# TRANSMISSION/TRANSAXLE

05 SECTION

# 05-00 OUTLINE

#### TRANSMISSION/TRANSAXLE FEATURES

id050000302000

| 6-SPPED MT [P66M-D]    |                                                                                                                                                                                                                                                                   |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Improved operability   | <ul> <li>A triple synchronizer mechanism has been adopted for 1GR, 2GR, 3GR and 4GR.</li> <li>Low friction bushings for the shift rod have been adopted.</li> </ul>                                                                                               |
| Improved driveability  | <ul> <li>In order to obtain more power from the engine, the total gear ratio has been set lower and the difference between each gear ratio has been set closer.</li> <li>To improve drivetrain rigidity, the power plant frame (PPF) has been adopted.</li> </ul> |
| Improved fuel economy  | Six-speed P66M-D manual transmission has been adopted.                                                                                                                                                                                                            |
| Improved marketability | Six-speed P66M-D manual transmission has been adopted.                                                                                                                                                                                                            |
| Improved reliability   | A double engagement prevention mechanism (interlock mechanism) has been adopted.                                                                                                                                                                                  |
| Mis-shift prevention   | A push-type reverse lockout mechanism has been adopted.                                                                                                                                                                                                           |
| 6-SPPED AT [SJ6A-EL]   |                                                                                                                                                                                                                                                                   |
| Improved reliability   | A cooling system has been changed.                                                                                                                                                                                                                                |
| Improved operability   | <ul><li>A direct mode control has been adopted.</li><li>A steering shift switch has been changed.</li></ul>                                                                                                                                                       |

#### TRANSMISSION/TRANSAXLE SPECIFICATIONS

id050000302100

#### Clutch

|                      | 14                  |                | Specifica                       | ations   |
|----------------------|---------------------|----------------|---------------------------------|----------|
|                      | Item                | 2009MY RX-8    | 2008MY RX-8                     |          |
| Clutch control       |                     | Floor-shift    | <b>←</b>                        |          |
| Clutch cover         | Spring type         |                | Diaphragm                       | <b>←</b> |
| Clutch cover         | Set load            | (N {kgf, lbf}) | 6,470 {660, 1,455}              | <b>←</b> |
| Clutch disc          | Outer diameter      | (mm {in})      | 236 {9.29}                      | <b>←</b> |
|                      | Inner diameter      | (mm {in})      | 160 {6.30}                      | <b>←</b> |
|                      | Type                |                | Suspended                       | <b>←</b> |
| Clutch pedal         | Pedal ratio         |                | 5.7                             | <b>←</b> |
|                      | Full stroke         | (mm {in})      | 130 {5.118}                     | <b>←</b> |
| Clutch master cylir  | nder inner diameter | 15.87 {0.6248} | <b>←</b>                        |          |
| Clutch release cylin | nder inner diameter | (mm {in})      | 19.05 {0.7500}                  | <b>←</b> |
| Clutch fluid type    |                     |                | SAE J1703 or FMVSS<br>116 DOT-3 | <b>←</b> |

# 2009 Mazda RX-8 Service Highlights (3452–1U–08C) **OUTLINE**

Manual Transmission [P66M-D]

|                     | Item                        |                     | Speci             | fications                |  |
|---------------------|-----------------------------|---------------------|-------------------|--------------------------|--|
|                     | item                        |                     | 2009MY RX-8       | 2008MY RX-8              |  |
| Manual transmission | type                        |                     | P66M-D            | Y16M-D                   |  |
| Transaxle control   |                             |                     | Floor-shift       | <b>←</b>                 |  |
| Shift assist        |                             |                     | Synchromesh       | ←                        |  |
|                     | 1GR                         |                     | 3.815             | 3.760                    |  |
|                     | 2GR                         |                     | 2.260             | 2.269                    |  |
|                     | 3GR                         |                     | 1.536             | 1.645                    |  |
| Gear ratio          | 4GR                         |                     | 1.177             | 1.187                    |  |
|                     | 5GR                         |                     | 1.000             | <b>←</b>                 |  |
|                     | 6GR                         |                     | 0.787             | 0.843                    |  |
|                     | Reverse                     |                     | 3.603             | 3.564                    |  |
| Oil                 | Grade                       |                     | API service GL-4  | API service GL-4 or GL-5 |  |
|                     | Viscosity                   | All season          | SAE 75W-90        | <b>←</b>                 |  |
|                     | Capacity (approx. quantity) | (L {US qt, Imp qt}) | 1.95 {2.06, 1.72} | 1.75 {1.85, 1.54}        |  |

**Automatic Transmission [SJ6A-EL]** 

| la                                      | _                                              | Specifications |             |  |  |  |
|-----------------------------------------|------------------------------------------------|----------------|-------------|--|--|--|
| Iter                                    | n                                              | 2009MY RX-8    | 2008MY RX-8 |  |  |  |
| Transmission type                       |                                                | SJ6A-EL        | <b>←</b>    |  |  |  |
|                                         | 1GR                                            | 3.538          | <b>←</b>    |  |  |  |
|                                         | 2GR                                            | 2.060          | <b>←</b>    |  |  |  |
|                                         | 3GR                                            | 1.404          | <b>←</b>    |  |  |  |
| Gear ratio                              | 4GR                                            | 1.000          | <b>←</b>    |  |  |  |
|                                         | 5GR                                            | 0.713          | <b>←</b>    |  |  |  |
|                                         | 6GR                                            | 0.582          | ←           |  |  |  |
|                                         | Reverse                                        | 3.168          | <b>←</b>    |  |  |  |
|                                         | Туре                                           | JWS3309        | <b>←</b>    |  |  |  |
| ATF                                     | Capacity (Approx. quantity) (L {US qt, Imp qt} | 8.0 {8.5, 7.0} | <b>←</b>    |  |  |  |
| Torque converter stall torque ratio     | ·                                              | 1.87           | <b>←</b>    |  |  |  |
|                                         | C1 clutch                                      | 4/4            | <b>←</b>    |  |  |  |
|                                         | C2 clutch                                      | 5/5            | <b>←</b>    |  |  |  |
|                                         | C3 clutch                                      | 4/3            | <b>←</b>    |  |  |  |
| Hydraulic system                        | C4 clutch                                      | 4/4            | <b>←</b>    |  |  |  |
| (Number of drive/driven plates)         | B1 brake                                       | 3/3            | <b>←</b>    |  |  |  |
|                                         | B2 brake                                       | 4/3            | <b>←</b>    |  |  |  |
|                                         | B3 brake                                       | 4/4            | <b>←</b>    |  |  |  |
|                                         | B4 brake                                       | 5/4            | <b>←</b>    |  |  |  |
|                                         | Sun gear                                       | 33             | <b>←</b>    |  |  |  |
| Front planetary gear (Number of teeth)  | Pinion gear (inner)                            | 19             | <b>←</b>    |  |  |  |
| From planetary gear (Number of teetin)  | Pinion gear (outer)                            | 18             | <b>←</b>    |  |  |  |
|                                         | Ring gear                                      | 75             | <b>←</b>    |  |  |  |
|                                         | Sun gear                                       | 26             | <b>←</b>    |  |  |  |
| Middle planetary gear (Number of teeth) | Pinion gear                                    | 20             | <b>←</b>    |  |  |  |
|                                         | Ring gear                                      | 66             | <b>←</b>    |  |  |  |
|                                         | Sun gear                                       | 26             | <b>←</b>    |  |  |  |
| Rear planetary gear (Number of teeth)   | Pinion gear                                    | 20             | <b>←</b>    |  |  |  |
|                                         | Ring gear                                      | 66             | <b>←</b>    |  |  |  |

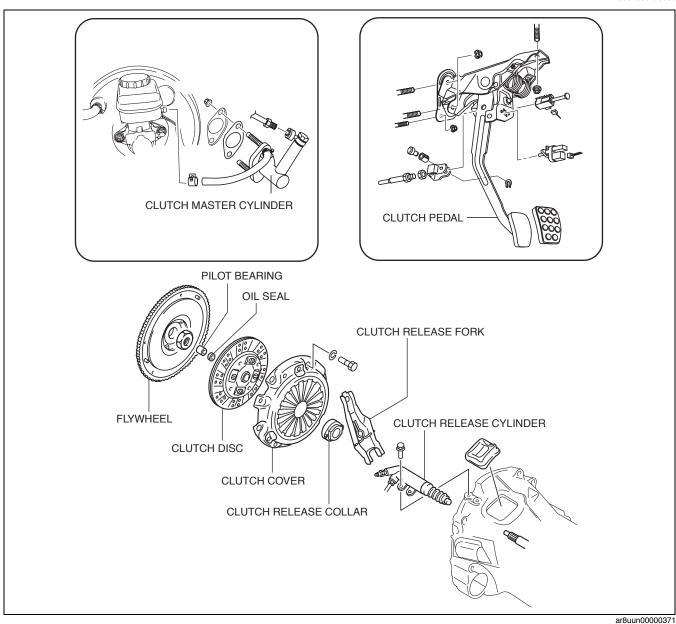
id050000302300

• Each Transmission/Transaxle is assigned a specific Mazda type code. The code can be broken down as

follows: **Manual Transmission P66M-D** · Shift control type D: Direct shift control Transmission/transaxle type M: Manual transmission/transaxle Transmission/transaxle speed 6: 6-speed Transmission/transaxle model P6: P6-type **Automatic Transmission** SJ6A-EL Converter type L: With lockup clutch · Shift control type E: Electronic shift control Transmission/transaxle type A: Automatic transmission/transaxle Transmission/transaxle speed 6: 6-speed Transmission/transaxle model SJ: SJ-type

05-00

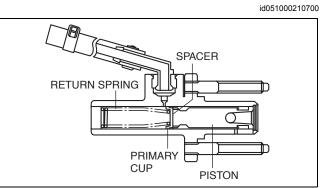
# 05-10 CLUTCH


#### **CLUTCH OUTLINE**

id051000100300

• A hydraulic clutch control mechanism is used.

#### **CLUTCH STRUCTURAL VIEW**


id051000100500



# **CLUTCH**

# **CLUTCH MASTER CYLINDER CONSTRUCTION**

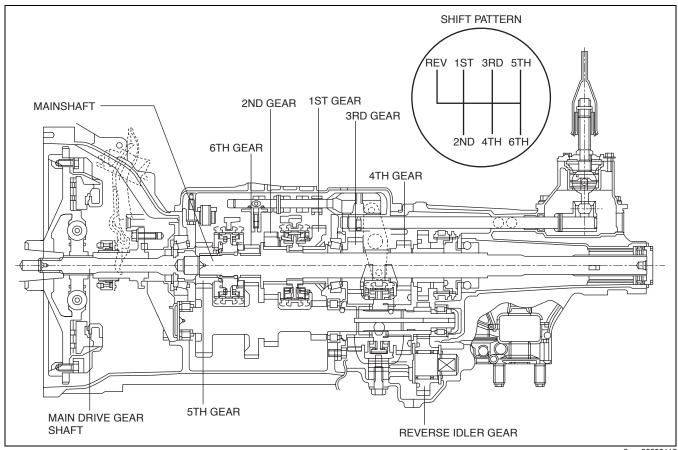
• The clutch master cylinder consists of a primary cup, spacer, piston, and a return spring.



| MANUAL TRANSMISSION OUTLINE    |
|--------------------------------|
| [P66M-D]                       |
| MANUAL TRANSMISSION            |
| CROSS-SECTIONAL VIEW           |
| [P66M-D]                       |
| MANUAL TRANSMISSION POWER FLOW |
| [P66M-D]05-11-2                |
| SHIFT MECHANISM STRUCTURE      |
| [P66M-D]                       |
| TRIPLE CONE                    |
| SYNCHRONIZER MECHANISM         |
| STRUCTURE [P66M-D] 05-11-4     |
| Features                       |
| Structure                      |
| TRIPLE CONE                    |
| SYNCHRONIZER MECHANISM         |
| OPERATION [P66M-D]             |

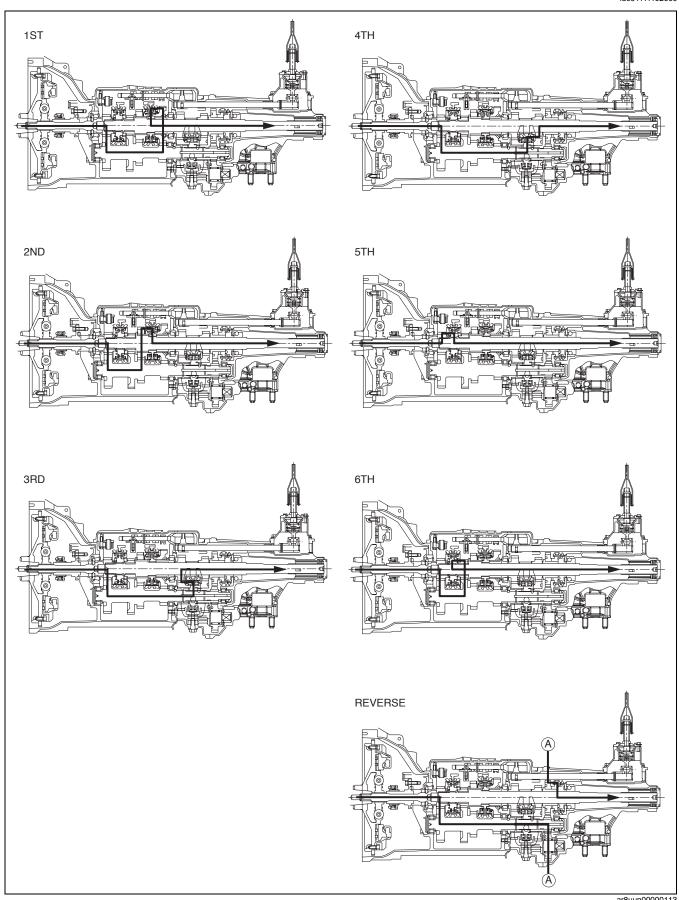
| SHIFT INTERLOCK MECHANISM FUNCTION [P66M-D]SHIFT INTERLOCK MECHANISM | . 05-11–6 |
|----------------------------------------------------------------------|-----------|
| OPERATION [P66M-D]                                                   | .05-11-6  |
| Structure                                                            |           |
| Operation                                                            | .05-11-6  |
| REVERSE LOCKOUT MECHANISM                                            |           |
| FUNCTION [P66M-D]                                                    | .05-11-7  |
| REVERSE LOCKOUT MECHANISM                                            |           |
| CONSTRUCTION/OPERATION                                               |           |
| [P66M-D]                                                             | . 05-11–7 |
| POWER PLANT FRAME (PPF)                                              |           |
| <b>FUNCTION</b> [P66M-D]                                             | . 05-11-8 |
| Features                                                             | . 05-11–8 |
|                                                                      |           |

05-11


#### MANUAL TRANSMISSION OUTLINE [P66M-D]

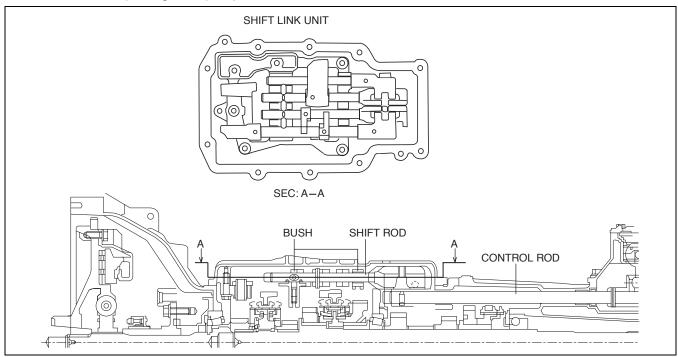
id051111102400

- A linked, triple-cone synchronizer mechanism has been adopted for 1st, 2nd, 3rd and 4th gears.
- A push-type reverse lockout mechanism has been adopted.


## MANUAL TRANSMISSION CROSS-SECTIONAL VIEW [P66M-D]

id051111102500




# MANUAL TRANSMISSION POWER FLOW [P66M-D]

id051111102600

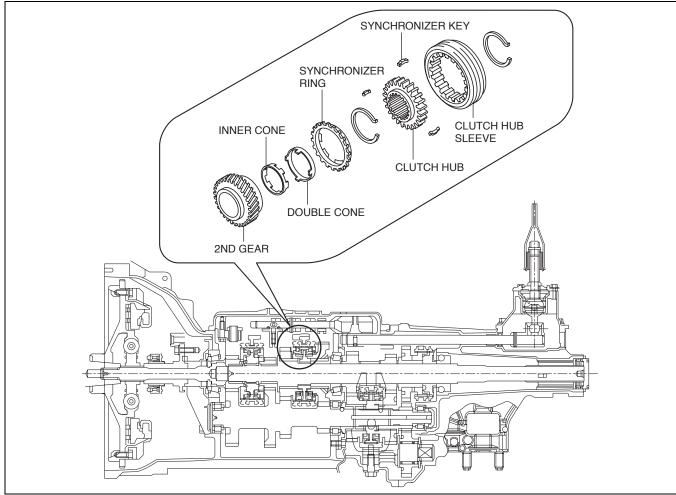


id051111102700

- The shift lever stroke has been set shorter to provide optimal shift feel.
  To realize assured shift feel, the shift link mechanism has been integrated.
- Due to the use of metal bushings for the sliding parts of the shift rod, sliding resistance during shifting is greatly reduced, thus improving shift quality.

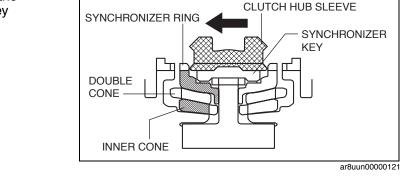


ar8uun00000114


#### TRIPLE CONE SYNCHRONIZER MECHANISM STRUCTURE [P66M-D]

id051111103200

#### **Features**


- A triple cone synchronizer mechanism is used for the 1st, 2nd, 3rd and 4th gears.
- The triple cone synchronizer mechanism is a compact device capable of heavy duty meshing.
- The synchro mechanism reduces meshing time and improves operation.
- The triple cone synchro mechanism includes a synchronizer ring, a double cone, and an inner cone.

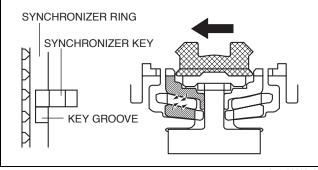
#### Structure Structural view



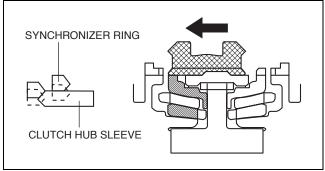
id051111103300

1. When the hub sleeve moves to the left (in the direction of the arrow), the synchronizer key presses against the synchronizer ring.



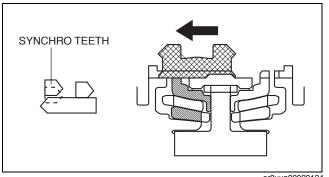

2. As the hub sleeve continues moving to the left, the key causes friction between the synchronizer ring, double cone, and inner cone. The synchronizer ring turns only the distance that the key groove gap allows, aligning the teeth of the hub sleeve and the synchronizer ring. As the hub sleeve continues moving, the friction between the cones becomes greater, and the difference

between the rotational speeds of the synchronizer


ring, inner cone, and double cone (unified with the

3. The hub sleeve then moves up onto the synchronizer key and engages the synchronizer ring.

gear) gradually disappears.




ar8uun00000122



ar8uun00000123

4. The hub sleeve then engages the synchro teeth of the gear to complete shifting.



ar8uun00000124

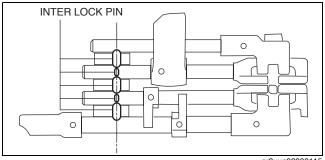
#### SHIFT INTERLOCK MECHANISM FUNCTION [P66M-D]

id051111103000

• This provides reliable double-engagement prevention.

#### SHIFT INTERLOCK MECHANISM OPERATION [P66M-D]

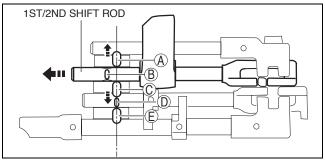
id051111103100


#### Structure

• During shifting, the shift rods, except for the one in operation, are locked in the neutral position by the interlock pins.

# Operation

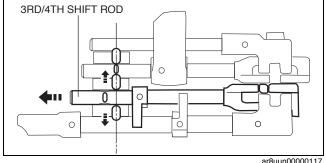
#### Neutral


 Each interlock pin is in the groove of each shift rod because no shift rod is operating.



ar8uun00000115

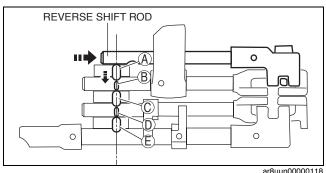
#### 1st/2nd shifting


 Movement of the 1st/2nd shift rod forces interlock pins A and C out of the 1st/2nd shift rod grooves. and the reverse shift rod and 3rd/4th shift rod are locked. In addition, interlock pin C forces interlock pin E out via interlock pin D, and the 5th/6th shift rod is locked.



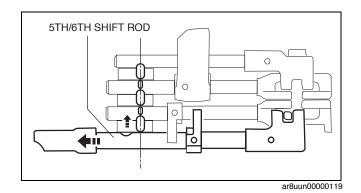
ar8uun00000116

#### 3rd/4th shifting


· When the 3rd/4th shift rod operates, the other three shift rods are locked in the same way as the 1st/2nd shifting.



ar8uun00000117


#### Reverse shifting

 Movement of the reverse shift rod forces interlock pin A out of the reverse shift rod groove, and the 1/2 shift rod is locked. In addition, interlock pin A forces interlock pins C and E out via interlock pins B and D, and the 3rd/4th shift rod and 5th/6th shift rod are locked.

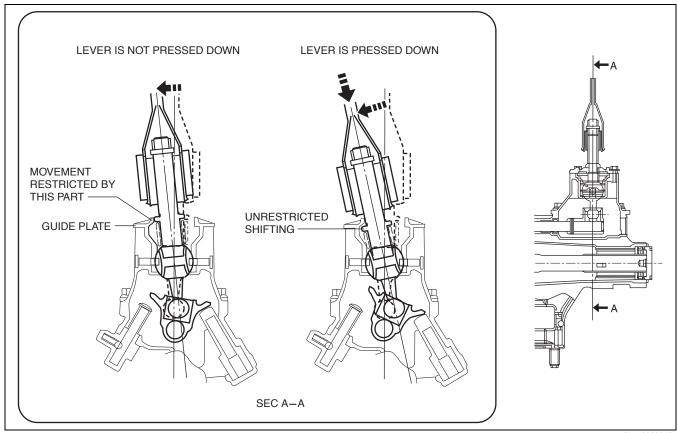


#### 5th/6th shifting

 When the 5th/6th shift rod operates, the other three shift rods are locked in the same way as the reverse shifting.



#### **REVERSE LOCKOUT MECHANISM FUNCTION [P66M-D]**

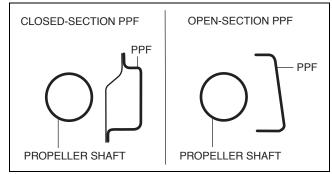

id051111103800

• The reverse lockout mechanism prevents the driver from accidentally shifting into reverse gear when shifting from neutral to 1st gear.

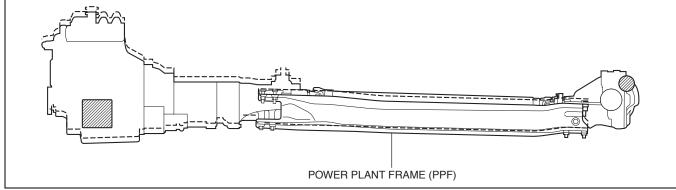
#### REVERSE LOCKOUT MECHANISM CONSTRUCTION/OPERATION [P66M-D]

id051111103900

- With the adoption of the reverse lockout mechanism, which utilizes a guide plate, reliability has been assured.
- A guide plate, attached to the extension housing, prevents accidental shifting into reverse when shifting from
  neutral to 1st gear by restricting the movement of the shift lever. When shifting into reverse, once the shift lever
  is pressed down and moved towards the reverse position, the projection on the lever goes under the guide
  plate, releasing the reverse shift restriction and allowing for shifting into reverse.




#### POWER PLANT FRAME (PPF) FUNCTION [P66M-D]


id051111634000

#### **Features**

- The power plant frame (PPF) maintains rigidity with a bracket installed between the transmission and the differential. Due to this the shift feeling is solid and a feeling of direct drive when starting from a standstill or accelerating is created.
- Also, due to the closed-section construction of the PPF, direct drive and response feeling have been improved.
  - The transmission and differential are joined in a single unit which, even though the differential can be separated from the body, time lag is lessened due to the near elimination of lift, creating a feeling of direct drive. Furthermore, shock and vibration during acceleration and deceleration is greatly reduced.



ar8uun00000154



# **AUTOMATIC TRANSMISSION [SJ6A-EL]**

# 05-13 AUTOMATIC TRANSMISSION [SJ6A-EL]

| ELECTRONIC CONTROL ITEMS AND       | DIRECT MODE CONTROL OUTLINE |         |
|------------------------------------|-----------------------------|---------|
| CONTENTS [SJ6A-EL] 05-13-1         | [SJ6A-EL]                   | 05-13-4 |
| INPUT/OUTPUT SIGNAL AND            | Features                    | 05-13-4 |
| RELATED CONTROLS [SJ6A-EL] 05-13-2 | Block Diagram               | 05-13-4 |
| COOLING SYSTEM OUTLINE             | System Flow                 |         |
| [SJ6A-EL]                          | •                           |         |

# **ELECTRONIC CONTROL ITEMS AND CONTENTS [SJ6A-EL]**

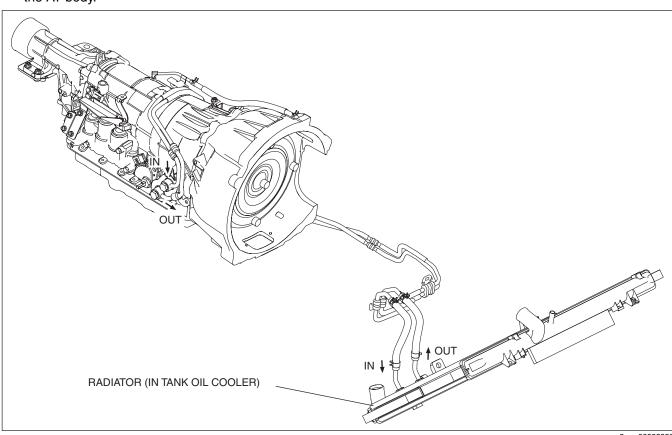
id051311324800

| Item                       | Content                                                                                                                                                                                                                                                        |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shift control              | <ul> <li>Detects engine load and vehicle speed, and switches to optimum gear in accordance with preset shift program.</li> <li>In D range, automatically switches between NORMAL, AAS, DOWN-SLOPE, UP-SLOPE modes according to specific conditions.</li> </ul> |
| Manual mode shift control  | <ul> <li>Shifts to selected gear position by manual shifting of the selector lever forward and back.</li> <li>The up/down operation of the steering shift switch is the same as the manual operation of the selector lever.</li> </ul>                         |
| Direct mode control        | Shifts temporarily by using the steering shift switch even when the selector lever is in the D range                                                                                                                                                           |
| TCC control                | According to preset TCC point, performs TCC operation.                                                                                                                                                                                                         |
| 5-6 shift inhibit control  | Inhibits shift change from the 5th to 6th gears when the engine is cold.                                                                                                                                                                                       |
| Torque reduction control   | Optimally controls engine output torque when shifting.                                                                                                                                                                                                         |
| Line pressure control      | Controls line pressure according to driving conditions.                                                                                                                                                                                                        |
| Shift learning control     | Performs optimal correction for clutch engagement pressure to reduce changes in engine performance and/or elapsed transmission.                                                                                                                                |
| On-board diagnostic system | Detects and/or memorizes failure of input/output part and transmission condition.                                                                                                                                                                              |

# **AUTOMATIC TRANSMISSION [SJ6A-EL]**

# INPUT/OUTPUT SIGNAL AND RELATED CONTROLS [SJ6A-EL]

id051311325000


|                                    |                                                       |                  |                                    |                           | С              | ontrol ite                         | m                                  |                                 |                                  |                                                |
|------------------------------------|-------------------------------------------------------|------------------|------------------------------------|---------------------------|----------------|------------------------------------|------------------------------------|---------------------------------|----------------------------------|------------------------------------------------|
| Component                          |                                                       | Shift<br>control | Manual<br>mode<br>shift<br>control | Direct<br>mode<br>control | TCC<br>control | 5-6<br>shift<br>inhibit<br>control | Torque<br>reducti<br>on<br>control | Line<br>pressu<br>re<br>control | Shift<br>learnin<br>g<br>control | On-<br>board<br>diagno<br>stic<br>functio<br>n |
| Input                              |                                                       |                  |                                    |                           |                |                                    |                                    |                                 |                                  |                                                |
| VSS                                |                                                       | Х                | Х                                  | Х                         | Х              |                                    |                                    | Х                               |                                  | Х                                              |
| Turbine sensor                     |                                                       | Х                | Х                                  | Х                         | Х              |                                    | Х                                  | Х                               | Х                                | Х                                              |
| TR switch                          |                                                       | Х                | Х                                  |                           |                | Х                                  |                                    |                                 |                                  |                                                |
| M range switch                     |                                                       |                  | Х                                  |                           |                |                                    |                                    | Х                               |                                  |                                                |
| Up switch                          |                                                       |                  | Х                                  |                           |                |                                    |                                    | Х                               |                                  |                                                |
| Down switch                        |                                                       |                  | Х                                  |                           |                |                                    |                                    | Х                               |                                  |                                                |
| Steering shift sv                  | vitch                                                 |                  | Х                                  | Х                         |                |                                    |                                    | Х                               |                                  |                                                |
| TFT sensor                         |                                                       | Х                | Х                                  |                           | Х              |                                    |                                    | Х                               |                                  |                                                |
|                                    | Brake switch                                          |                  |                                    |                           | Х              |                                    |                                    |                                 |                                  |                                                |
|                                    | Throttle opening signal (APP sensor)                  | Х                | Х                                  | Х                         |                |                                    | Х                                  | Х                               |                                  | Х                                              |
|                                    | Engine speed signal (Eccentric shaft position sensor) | х                |                                    | х                         | х              |                                    | х                                  | х                               | х                                | х                                              |
| CAN communication                  | Engine torque signal (MAF sensor)                     |                  |                                    |                           |                |                                    | х                                  | х                               | х                                | х                                              |
| Communication                      | Cruise control signal                                 | Х                |                                    |                           |                |                                    |                                    |                                 |                                  |                                                |
|                                    | Engine coolant<br>temperature signal<br>(ECT sensor)  | х                |                                    |                           | х              | х                                  |                                    |                                 |                                  | х                                              |
|                                    | Wheel speed signal<br>(wheel speed<br>sensor)         | Х                |                                    | Х                         |                |                                    |                                    |                                 |                                  |                                                |
| Output                             |                                                       |                  |                                    |                           |                |                                    |                                    |                                 |                                  |                                                |
|                                    | Shift solenoid A                                      | X                | X                                  | Х                         |                |                                    |                                    |                                 | X                                | Х                                              |
|                                    | Shift solenoid B                                      | Х                | X                                  | Х                         |                |                                    |                                    |                                 | X                                | X                                              |
| ON/OFF type                        | Shift solenoid C                                      | X                | Х                                  | Х                         |                |                                    |                                    |                                 | Х                                | Х                                              |
|                                    | Shift solenoid D                                      | Х                | X                                  | Х                         |                |                                    |                                    |                                 | Х                                | Х                                              |
|                                    | Shift solenoid E                                      | Х                | Х                                  | Х                         |                |                                    |                                    |                                 | Х                                | Х                                              |
|                                    | Line pressure control solenoid                        | Х                | Х                                  | Х                         |                |                                    |                                    | Х                               | Х                                | Х                                              |
| Linear type                        | TCC control solenoid                                  |                  |                                    |                           | X              |                                    |                                    |                                 |                                  | Х                                              |
|                                    | Shift solenoid F                                      | Х                | Х                                  | Х                         |                | Х                                  |                                    | Х                               | Х                                | Х                                              |
|                                    | Shift solenoid G                                      | Х                | Х                                  | Х                         |                | Х                                  |                                    | Х                               | Х                                | Х                                              |
| CAN                                | AT warning light                                      | Х                | Х                                  |                           |                |                                    |                                    |                                 |                                  | Х                                              |
| communication Reduce torque signal |                                                       |                  |                                    |                           |                |                                    | Х                                  |                                 |                                  |                                                |
| Speedometer si                     | gnal                                                  |                  |                                    |                           |                |                                    |                                    |                                 |                                  |                                                |

X : Available

# **COOLING SYSTEM OUTLINE [SJ6A-EL]**

id051311327300

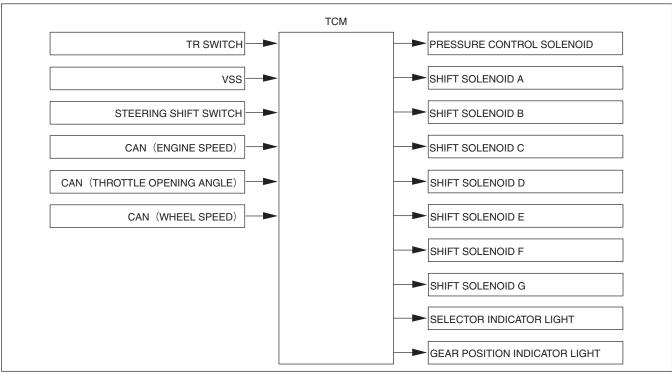
• A water-cooling type AT oil cooler is adopted and installed in the radiator. The oil cooler cools the ATF heated in the AT body.



ar8wzn00000099

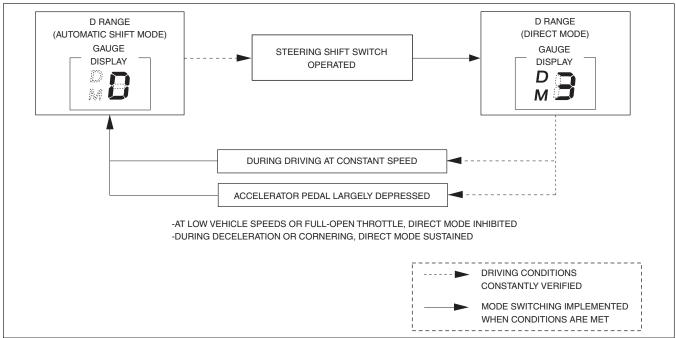
05-13-3

## **AUTOMATIC TRANSMISSION [SJ6A-EL]**


#### **DIRECT MODE CONTROL OUTLINE [SJ6A-EL]**

id051311638000

#### **Features**


- Direct mode control enables temporary use of manual shifting using the steering shift switch even when the selector lever is in the D range.
- The transmission can be controlled at the driver's discretion by operating the steering shift switch, which enables effective downshift during deceleration using engine brake force, cornering after deceleration, and acceleration when passing.
- After switching to direct mode, the system returns to automatic shift mode automatically in accordance with driving conditions.

#### **Block Diagram**



ar8wzn00000159

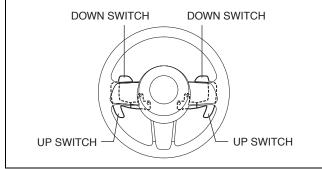
#### **System Flow**



ar8wzn00000504

#### **AUTOMATIC TRANSMISSION SHIFT MECHANISM**

# 05-14 AUTOMATIC TRANSMISSION SHIFT MECHANISM


STEERING SHIFT SWITCH Construction ......05-14–1 CONSTRUCTION/OPERATION .....05-14–1 Operation ......05-14–1

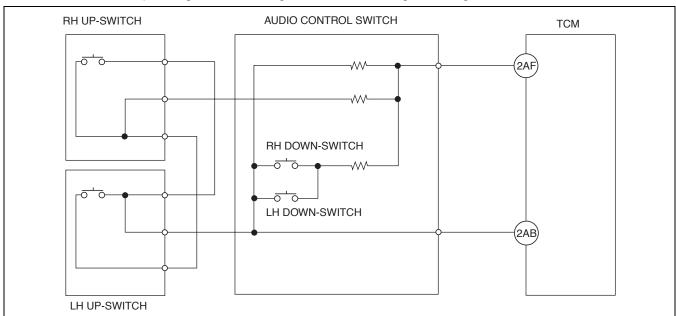
#### STEERING SHIFT SWITCH CONSTRUCTION/OPERATION

id051400328400

#### Construction

- There is one pair of up and down switches on both the left and right sides of the steering wheel.
- The down switch is built into the audio control switch.




ar8wzn00000104

05-14

#### Operation

#### Sending of up/down-shift request signals

- The TCM detects an up/down-shift request signal according to the voltage applied to terminal 2AF.
- When the up or down switch is operated, the resistor built into the down switch changes the voltage applied to TCM terminal 2AF.
- The TCM controls upshifting or downshifting based on this change in voltage.



ar8wzn00000105

# 07-00

# HEATER, VENTILATION & AIR CONDITIONING (HVAC)

O7 SECTION

# **07-00 OUTLINE**

HVAC ABBREVIATION ...............07-00-1 HVAC FEATURES .................07-00-1 HVAC SPECIFICATIONS

 [FULL-AUTO AIR CONDITIONER]
 ... 07-00-1

 Basic System
 ... 07-00-1

 Control System
 ... 07-00-2

#### **HVAC ABBREVIATION**

id070000100100

| A/C | Air Conditioning           |
|-----|----------------------------|
| B+  | Battery Positive Voltage   |
| CPU | Central Processing Unit    |
| DTC | Diagnostic Trouble Code    |
| ECT | Engine Coolant Temperature |
| HI  | High                       |
| IG  | Ignition                   |
| LO  | Low                        |
| M   | Motor                      |
| MAX | Maximum                    |
| OFF | Switch Off                 |
| ON  | Switch On                  |
| PCM | Powertrain Control Module  |
| REC | Recirculate                |
| SW  | Switch                     |

#### **HVAC FEATURES**

id070000100200

| Improved marketability | Full-auto air conditioner adopted |
|------------------------|-----------------------------------|

#### **HVAC SPECIFICATIONS [FULL-AUTO AIR CONDITIONER]**

#### **Basic System**

id0700001003a1

|                  | Item                              |               | Specification |
|------------------|-----------------------------------|---------------|---------------|
| Heating capacity |                                   | (kW {kcal/h}) | 4.400 {3,784} |
| Cooling capacity |                                   | (kW {kcal/h}) | 4.500 {3,870} |
|                  | Туре                              |               | R-134a        |
| Refrigerant      | Regular amount (approx. quantity) | (g {oz})      | 430 {15.2}    |

# **OUTLINE**

| Item                 |               |                                  | Specification    |                              |
|----------------------|---------------|----------------------------------|------------------|------------------------------|
|                      | Туре          |                                  | Scroll type      |                              |
|                      | Discharge     | capacity                         | (ml {cc, fl oz}) | 60 {60, 2.03}                |
| A/C compressor       | Max. allov    | vable speed                      | (rpm)            | 9,000                        |
| 7 VO COMPTCOSON      |               | Type                             |                  | DENSO OIL8                   |
|                      | Lube oil      | Sealed volume (approx. quantity) | (ml {cc, fl oz}) | 60 {60, 2.03}                |
|                      | Туре          |                                  |                  | Multiflow (sub-cooling type) |
| Condenser            | Radiated heat |                                  | (kW {kcal/h})    | 7.0 {6,020}                  |
| Condenser            | Receiver/     | drier capacity                   | (ml {cc, fl oz}) | 190 {190, 6.42}              |
| Desiccant            |               |                                  | XH-9             |                              |
| Expansion valve Type |               | External pressure equalizer      |                  |                              |
| Evaporator Type      |               | Double-tank drawn cup            |                  |                              |
| Temperature control  |               |                                  |                  | Reheat full air mix type     |

# **Control System**

|                                                   | Item                                     | Specification                             |
|---------------------------------------------------|------------------------------------------|-------------------------------------------|
| A: fl                                             | nem                                      | Specification                             |
| Airflow volume (during heater operation)          | Blower motor (m <sup>3</sup> /h)         | 300                                       |
| Electricity consumption (during heater operation) | Blower motor (W)                         | 220                                       |
| Airflow volume (during air conditioner operation) | Blower motor (m <sup>3</sup> /h)         | 460                                       |
| Electricity consumption                           | Blower motor (W)                         | 220                                       |
| (during air conditioner operation)                | Magnetic clutch (W)                      | 35                                        |
| Magnetic clutch clearance (a                      | approx. quantity) (mm {in})              | 0.20-0.45 {0.008-0.017}                   |
| Fan type                                          | Blower motor                             | Sirocco fan                               |
|                                                   | Туре                                     | Triple-pressure                           |
|                                                   | Operating pressure                       | HI AND LO PRESSURE<br>0.18-0.22 2.94-3.17 |
| Refrigerant pressure switch                       | (MPa {kgf/cm <sup>2</sup> , psi})        | OFF                                       |
|                                                   | Solar radiation sensor                   | Photodiode                                |
|                                                   | Ambient temperature sensor               |                                           |
| Sensor                                            | Passenger compartment temperature sensor | Thermistor                                |
|                                                   | Evaporator temperature sensor            |                                           |
|                                                   | Air intake actuator                      | Sliding contact type                      |
| Actuator                                          | Air mix actuator                         | Potentiometer type                        |
|                                                   | Airflow mode actuator                    | Potentionieter type                       |

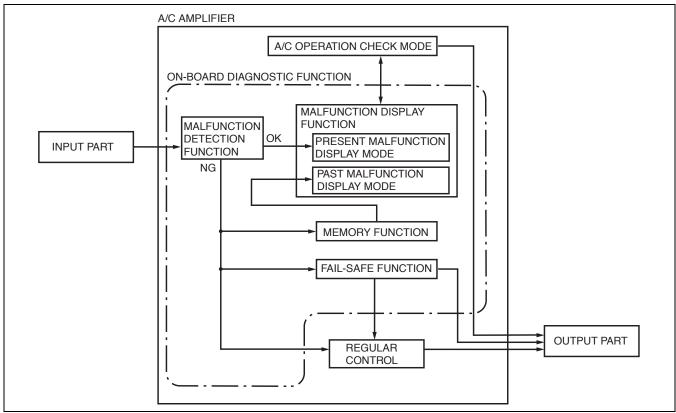
# 07-02

# 07-02 ON-BOARD DIAGNOSTIC

| ON-BOARD DIAGNOSTIC FUNCTION |         | ON-BOARD DIAGNOSTIC FUNCTION 0                            | 7-02-3 |
|------------------------------|---------|-----------------------------------------------------------|--------|
| OUTLINE                      | 07-02–1 | Malfunction Detection Function0                           | 7-02-3 |
| Features                     | 07-02–1 | Fail-safe Function0                                       | 7-02-3 |
| ON-BOARD DIAGNOSTIC FUNCTION |         | Memory Function0                                          | 7-02-3 |
| BLOCK DIAGRAM                | 07-02–1 | Malfunction Display Function0                             | 7-02-4 |
| Block Diagram                | 07-02–1 | Present Malfunction Display Mode 0                        | 7-02-4 |
| Condition Transition Diagram |         | Past Malfunction Display Mode0  A/C Operation Check Mode0 |        |
|                              |         |                                                           |        |

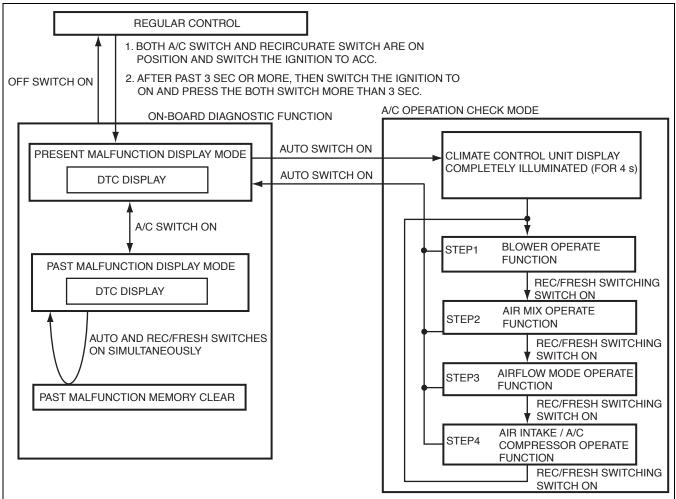
#### ON-BOARD DIAGNOSTIC FUNCTION OUTLINE

id070200100100


#### **Features**

• Includes the on-board diagnostic function and A/C operation check mode. The on-board diagnostic function consists of a malfunction detection function that detects abnormalities in input/output signals, a memory function that stores detected malfunctions, a fail-safe function that prevents mis-operation of output parts where a malfunction is detected, and a malfunction display function that displays detected malfunctions.

#### ON-BOARD DIAGNOSTIC FUNCTION BLOCK DIAGRAM


id070200100200

#### **Block Diagram**



#### **ON-BOARD DIAGNOSTIC**

#### **Condition Transition Diagram**



id070200100300

#### **ON-BOARD DIAGNOSTIC FUNCTION**

#### **Malfunction Detection Function**

- Detects errors in the input and output signals. (The ignition switch is at the ON position or the engine is running.)
- If a malfunction is detected, a DTC is output to the information display through the malfunction display function. At the same time, malfunction detection results are sent to the fail-safe and memory functions.

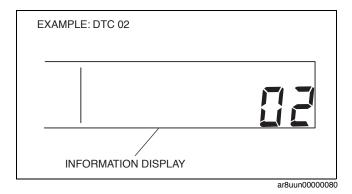
#### **Fail-safe Function**

• If a malfunction is detected by the malfunction detection function and a malfunction is determined, the following controls are performed to prevent mis-operation of the full-auto air conditioner and malfunction of output parts.

#### **Fail-safe Function Table**

| Malfunction determination part           | When malfunction is determined at IG SW ON                                                                                                                                                                             | When IG SW is turned to ON during malfunction                                                                                                                                                                           |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Passenger compartment temperature sensor | Passenger compartment temperature sensor input value is set at 25 °C {77 °F}.                                                                                                                                          | <b>←</b>                                                                                                                                                                                                                |
| Ambient temperature sensor               | Ambient temperature sensor input value is set at the value just before the malfunction.                                                                                                                                | <b>←</b>                                                                                                                                                                                                                |
| Evaporator temperature sensor            | Evaporator temperature sensor input value is set at 0 °C {32 °F}.                                                                                                                                                      | <b>←</b>                                                                                                                                                                                                                |
| Solar radiation sensor                   | Solar radiation sensor set value is set at $0 \text{ W/}$ $\text{m}^2$ .                                                                                                                                               | <b>←</b>                                                                                                                                                                                                                |
| ECT sensor                               | ECT sensor input value is set at 80 °C {176 °F}.                                                                                                                                                                       | <b>←</b>                                                                                                                                                                                                                |
| Air mix actuator<br>(Potentiometer)      | Stops the air mix actuator drive signal at the point a malfunction is determined.  However, MAX COLD when the manually set temperatures is at 18.0, and MAX HOT when the manually set temperature is 32.0.             | <b>←</b>                                                                                                                                                                                                                |
| Airflow mode actuator (Potentiometer)    | Stops the mode actuator drive signal at the point a malfunction is determined. However, for manual operation with the airflow mode selector switch, only vent mode is operable. Defroster switch operation is operable | <b>←</b>                                                                                                                                                                                                                |
| Air mix actuator<br>(Motor lock)         | Stops the air mix actuator drive signal at the point a malfunction is determined. Then a drive signal is output to the air mix actuator for approx. every 5 min and malfunction determination is performed.            | After the IG SW is at ON, regular output of the air mix actuator drive signal recommences. Then a drive signal is output to the air mix actuator <b>approx. every 5 min</b> and malfunction determination is performed. |
| Airflow mode actuator<br>(Motor lock)    | Stops mode actuator drive signal at the point a malfunction is determined. Then a drive signal is output to the mode actuator <b>approx. every 5 min</b> and malfunction determination is performed.                   | After the IG SW is at ON, regular output of the mode actuator drive signal recommences. Then a drive signal is output to the mode actuator <b>approx. every 5 min</b> and malfunction determination is performed.       |

#### **Memory Function**


- Stores the signal determined to be malfunctioning by the malfunction detection function, and the memory cannot be cleared even if the ignition switch is at the LOCK position or the malfunction has been repaired.
- To clear stored malfunction information, press the climate control unit AUTO switch and the REC/FRESH switch simultaneously during past malfunction display mode.

#### **ON-BOARD DIAGNOSTIC**

#### **Malfunction Display Function**

- Function for outputting present or past malfunctions to the information display as DTCs.
  DTCs are output by turning the ignition switch to the ON position while simultaneously pressing both the A/C switch and the REC/FRESH switch for 3 s or more.
- Redundant DTCs are output with lower-numbered DTC numbers.

#### **DTC Display Example**



#### **Present Malfunction Display Mode**

• Presently occurring malfunctions (open/short circuit) are detected and the DTCs are indicated on the information display.

#### **DTC Table**

| No. | Output pattern | Malfunction location                                                 | Detected condition                                                  | Memory function |
|-----|----------------|----------------------------------------------------------------------|---------------------------------------------------------------------|-----------------|
| 02  |                | Solar radiation sensor (present malfunction)                         | Solar radiation sensor circuit short                                | _               |
| 06  | 05             | Passenger compartment<br>temperature sensor (present<br>malfunction) | Passenger compartment temperature sensor circuit open/short circuit | _               |
| 10  | 10             | Evaporator temperature sensor (present malfunction)                  | Evaporator temperature sensor circuit open/short circuit            | _               |
| 12  | 12             | Ambient temperature sensor (present malfunction)                     | Ambient temperature sensor circuit open/short circuit               | _               |
| 14  | 14             | ECT sensor (present malfunction)                                     | ECT sensor open/short circuit                                       | _               |
| 18  | 18             | Air mix actuator (potentiometer) (present malfunction)               | Air mix actuator (potentiometer) circuit open/short circuit         | _               |
| 21  | 21             | Airflow mode actuator (potentiometer) (present malfunction)          | Airflow mode actuator (potentiometer) circuit open/short circuit    | _               |

#### ON-BOARD DIAGNOSTIC

#### **Past Malfunction Display Mode**

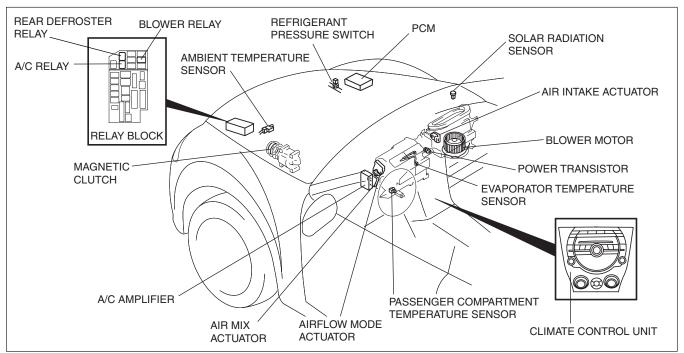
- Past occurrence of sensor and other input circuit malfunctions (open/short circuit) are stored and the DTCs indicated in the table are displayed on the information display. Once a past malfunction has been stored and after the malfunctioning part has been repaired, the past malfunction will continue to remain in the memory. Therefore, after repairing, clear the past malfunction from the memory.
- To clear stored past malfunction information, press the climate control unit AUTO switch and the REC/FRESH switch simultaneously during past malfunction display mode.

#### **DTC Table**

| No. | Output pattern | Malfunction location                                        | Detected condition                                                                                                 | Memory function |
|-----|----------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------|
| 07  |                | Passenger compartment temperature sensor (past malfunction) | When an open/short has occurred in the passenger compartment temperature sensor circuit 1 time or more in the past | Х               |
| 11  | 11             | Evaporator temperature sensor (past malfunction)            | When an open/short has occurred in the evaporator temperature sensor circuit 1 time or more in the past            | Х               |
| 13  | 13             | Ambient temperature sensor (past malfunction)               | When an open/short has occurred in the ambient temperature sensor circuit 1 time or more in the past               | Х               |
| 15  | 15             | ECT sensor (past malfunction)                               | When an open/short has occurred in the ECT sensor circuit 1 time or more in the past                               | Х               |
| 19  | 19             | Air mix actuator (potentiometer) (past malfunction)         | When an open/short has occurred in the air mix actuator (potentiometer) circuit <b>1 time or more</b> in the past  | х               |
| 22  | 22             | Airflow mode actuator (potentiometer) (past malfunction)    | When an open/short has occurred in the airflow mode actuator (potentiometer) circuit 1 time or more in the past    | х               |
| 58  | 58             | Air mix actuator (motor lock) (past malfunction)            | When motor lock has occurred in the air mix actuator circuit 1 time or more in the past                            | Х               |
| 59  | 59             | Airflow mode actuator (motor lock) (past malfunction)       | When motor lock has occurred in the airflow mode actuator circuit <b>1 time or more</b> in the past                | Х               |

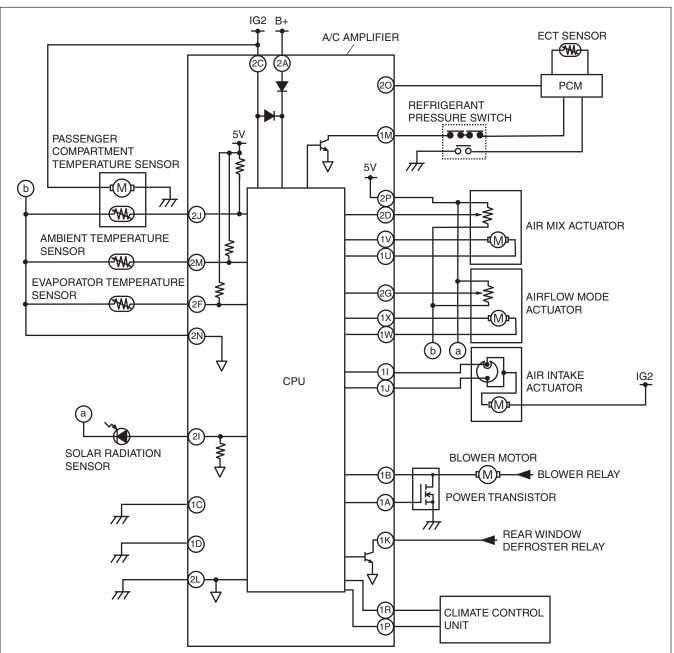
#### A/C Operation Check Mode

• The A/C amplifier forces operation of output related moving parts according to the operation check table regardless of the input, while simultaneously displaying changes on the information display that match the A/C amplifier control as well as performing automatic illumination of each switch indicator light. Each transition is verified whether it is as according to the operation check table through visual inspection, listening to operation sound or placing the hand on the blow-off opening to determine a malfunction.


| Step | Target part                       | Operation condition                       | Monitor display*                                     |
|------|-----------------------------------|-------------------------------------------|------------------------------------------------------|
| 1    | Blower motor                      | OFF→1ST→2ND→3RD→4TH→5TH→6TH→7TH           | 1                                                    |
| 2    | Air mix door                      | 0 %→50 %→100 %→50 %                       | 20.0 (0%)<br>20.5 (50%)<br>21.0 (100%)<br>20.5 (50%) |
| 3    | Airflow mode door                 | VENT→ BI-LEVEL→ HEAT→ HEAT/DEF→ DEFROSTER | 3                                                    |
| 4    | Air intake door<br>A/C compressor | FRESH ⇔ REC<br>ON ⇔ OFF                   | 4                                                    |

Shown on the information display (at the set temperature display) according to each step.

| CONTROL SYSTEM STRUCTURAL VIEW         | AIRFLOW VOLUME CONTROL                    |
|----------------------------------------|-------------------------------------------|
| [FULL-AUTO AIR CONDITIONER] 07-40-2    | SYSTEM DIAGRAM                            |
| CONTROL SYSTEM WIRING DIAGRAM          | [FULL-AUTO AIR CONDITIONER]07-40-10       |
| [FULL-AUTO AIR CONDITIONER] 07-40-3    | AIRFLOW VOLUME CONTROL                    |
| POWER TRANSISTOR CONSTRUCTION          | OPERATION                                 |
| [FULL-AUTO AIR CONDITIONER] 07-40-4    | [FULL-AUTO AIR CONDITIONER]07-40-10       |
| SOLAR RADIATION                        | Order of Priority for Controls 07-40–10   |
| SENSOR CONSTRUCTION                    | Airflow Volume Automatic Control 07-40-11 |
| [FULL-AUTO AIR CONDITIONER] 07-40-4    | Correction                                |
| PASSENGER COMPARTMENT                  | Airflow Volume Manual Control 07-40-12    |
| TEMPERATURE                            | AIRFLOW MODE CONTROL OUTLINE              |
| SENSOR CONSTRUCTION                    | [FULL-AUTO AIR CONDITIONER]07-40-12       |
| [FULL-AUTO AIR CONDITIONER] 07-40-5    | Features                                  |
| CLIMATE CONTROL UNIT                   | AIRFLOW MODE CONTROL                      |
| CONSTRUCTION                           | SYSTEM DIAGRAM                            |
| [FULL-AUTO AIR CONDITIONER] 07-40-5    | [FULL-AUTO AIR CONDITIONER]07-40-13       |
| A/C AMPLIFIER FUNCTION                 | AIRFLOW MODE CONTROL OPERATION            |
| [FULL-AUTO AIR CONDITIONER] 07-40-6    | [FULL-AUTO AIR CONDITIONER]07-40-13       |
| Block Diagram                          | Order of Priority for Controls 07-40–13   |
| FULL-AUTO AIR CONDITIONER FUNCTION     | Airflow Mode Automatic Control 07-40-13   |
| [FULL-AUTO AIR CONDITIONER] 07-40-7    | Correction                                |
| Control List                           | Airflow Mode Manual Control07-40-13       |
| Control Transition Based on Switch     | AIR INTAKE CONTROL OUTLINE                |
| Operation                              | [FULL-AUTO AIR CONDITIONER]07-40-14       |
| TARGET TEMPERATURE OUTLINE             | Features                                  |
| [FULL-AUTO AIR CONDITIONER] 07-40-8    | AIR INTAKE CONTROL SYSTEM DIAGRAM         |
| Features                               | [FULL-AUTO AIR CONDITIONER]07-40-14       |
| TARGET TEMPERATURE                     | AIR INTAKE CONTROL OPERATION              |
| BLOCK DIAGRAM                          | [FULL-AUTO AIR CONDITIONER]07-40-14       |
| [FULL-AUTO AIR CONDITIONER] 07-40-8    | Order of Priority for Controls 07-40–14   |
| TARGET TEMPERATURE OPERATION           | Air Intake Automatic Control 07-40–14     |
| [FULL-AUTO AIR CONDITIONER] 07-40-9    | Correction                                |
| Target Temperature Calculation 07-40-9 | Air Intake Manual Control                 |
| AIRFLOW TEMPERATURE CONTROL            | A/C COMPRESSOR CONTROL OUTLINE            |
| OUTLINE                                | [FULL-AUTO AIR CONDITIONER]07-40-15       |
| [FULL-AUTO AIR CONDITIONER] 07-40-9    | Features                                  |
| Features                               | A/C COMPRESSOR CONTROL                    |
| AIRFLOW TEMPERATURE CONTROL            | SYSTEM DIAGRAM                            |
| SYSTEM DIAGRAM                         | [FULL-AUTO AIR CONDITIONER]07-40-15       |
| [FULL-AUTO AIR CONDITIONER] 07-40-9    | A/C COMPRESSOR CONTROL                    |
| AIRFLOW TEMPERATURE CONTROL            | OPERATION                                 |
| OPERATION                              | [FULL-AUTO AIR CONDITIONER]07-40-16       |
| [FULL-AUTO AIR CONDITIONER] 07-40-9    | Control Flow Chart07-40-16                |
| Airflow Temperature                    | A/C Compressor Automatic Control07-40-17  |
| Automatic Control                      | Correction                                |
| Correction                             | A/C Compressor Manual Control07-40-17     |
| AIRFLOW VOLUME CONTROL OUTLINE         |                                           |
| [FULL-AUTO AIR CONDITIONER] 07-40-10   |                                           |
| Features 07-40-10                      |                                           |


#### CONTROL SYSTEM STRUCTURAL VIEW [FULL-AUTO AIR CONDITIONER]

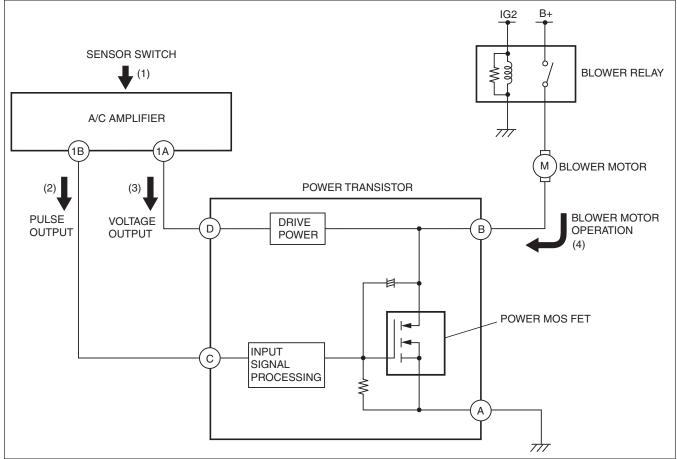
id0740a1100200



### CONTROL SYSTEM WIRING DIAGRAM [FULL-AUTO AIR CONDITIONER]

id0740a1100400



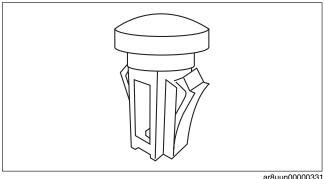

ar8uun00000057

07-40

#### POWER TRANSISTOR CONSTRUCTION [FULL-AUTO AIR CONDITIONER]

id0740a1673400

- 1. The A/C amplifier calculates the rotation speed of the blower motor based on input from each switch, sensor and the set temperature.
- 2. The calculated rotation speed is changed to a drive signal (pulse) and is output to the power transistor.
- 3. The power transistor that receives the signal determines the drive voltage required to operate the motor based on the rotation speed output from the A/C amplifier and outputs it to the power MOS FET.
- 4. The blower motor rotates at the same time the power MOS FET operates.

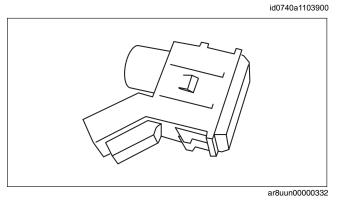



ar8uun00000239

id0740a1103800

#### **SOLAR RADIATION SENSOR CONSTRUCTION [FULL-AUTO AIR CONDITIONER]**

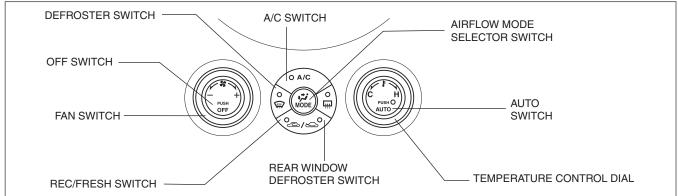
 A photo diode (light-receiving diode) has been adopted.




# 07-40

# **CONTROL SYSTEM [FULL-AUTO AIR CONDITIONER]**

# PASSENGER COMPARTMENT TEMPERATURE SENSOR CONSTRUCTION [FULL-AUTO AIR CONDITIONER]

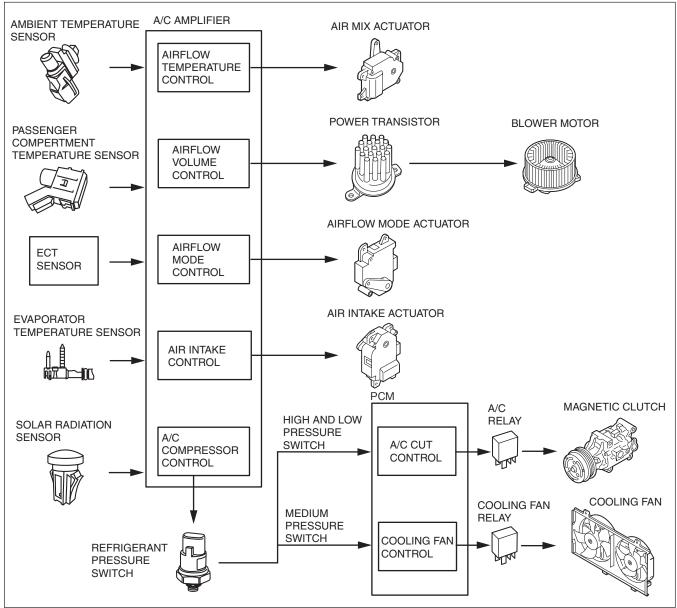

• A thermistor type has been adopted.



#### **CLIMATE CONTROL UNIT CONSTRUCTION [FULL-AUTO AIR CONDITIONER]**

id0740a1100900

• Composed of the following parts:




#### A/C AMPLIFIER FUNCTION [FULL-AUTO AIR CONDITIONER]

id0740a1356300

#### **Block Diagram**

• The control system consists of input components (sensors), output components (actuators, magnetic clutch, power transistor, and other parts), and a control device (climate control unit).



id0740a1100600

# **CONTROL SYSTEM [FULL-AUTO AIR CONDITIONER]**

#### FULL-AUTO AIR CONDITIONER FUNCTION [FULL-AUTO AIR CONDITIONER]

**Control List** 

• Function is based on five basic control items and two supplementary function items.

| Basic control               | Control content                       | Correction control                                                                                                                                                                                                   |
|-----------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Airflow temperature control | Airflow temperature automatic control | Air mix actuator opening angle correction     MAX HOT and MAX COLD correction                                                                                                                                        |
| Airflow volume control      | Airflow volume automatic control      | <ul> <li>Mild start correction</li> <li>Warm-up correction</li> <li>MAX HOT and MAX COLD correction</li> <li>Defroster correction</li> <li>Ambient temperature</li> <li>Burn prevention function at start</li> </ul> |
|                             | Airflow volume manual control         | <ul><li>Defroster correction</li><li>Burn prevention at start function</li></ul>                                                                                                                                     |
| Airflow mode control        | Airflow mode automatic control        | Warm-up correction     MAX HOT and MAX COLD correction                                                                                                                                                               |
|                             | Airflow mode manual control           | _                                                                                                                                                                                                                    |
| Air intake control          | Air intake automatic control          | Defroster correction     MAX HOT and MAX COLD correction                                                                                                                                                             |
|                             | Air intake manual control             | Defroster correction                                                                                                                                                                                                 |
| A/C compressor control      | A/C compressor automatic control      | Defroster correction     Ambient correction (during FRESH mode)     MAX HOT and MAX COLD correction                                                                                                                  |
|                             | A/C compressor manual control         | Defroster correction                                                                                                                                                                                                 |

| Supplemental functions |  |
|------------------------|--|
| Fail-safe function     |  |
| On-board function      |  |

#### **Control Transition Based on Switch Operation** Airflow temperature control, airflow volume control

| Operation switch             |                | Airflow temperature control       | Airflow volume control            |                                                | 1                                        |  |
|------------------------------|----------------|-----------------------------------|-----------------------------------|------------------------------------------------|------------------------------------------|--|
|                              |                | Control prior to switch operation | Control prior to switch operation |                                                |                                          |  |
|                              |                | Automatic control                 | Automatic control                 | Automatic control<br>(Defroster<br>correction) | Manual control                           |  |
| _ UP                         |                | Automatic control                 | Manual control*2                  | Manual control*2                               | Manual control                           |  |
| Fan switch                   | DOWN           | Automatic control                 | Manual control*3                  | Manual control*3                               | Manual control                           |  |
| Airflow mode selector switch |                | Automatic control                 | Automatic control                 | Condition prior to operation                   | No change                                |  |
| Defroster                    |                | Automatic control                 | Defroster correction              | Condition prior to operation                   | Automatic control (Defroster correction) |  |
| A/C switch                   |                | Automatic control                 | Automatic control                 | No change                                      | No change                                |  |
| REC/FRESH switch             |                | Automatic control                 | Automatic control                 | No change                                      | No change                                |  |
| Temperatu                    | 18 (left end)  | MAX COLD                          | HI                                | HI                                             | No change                                |  |
| re control                   | 19—31          | Automatic control                 | Automatic control                 | No change                                      | No change                                |  |
| dial                         | 32 (right end) | MAX HOT                           | AUTO HI <sup>*1</sup>             | AUTO HI                                        | No change                                |  |

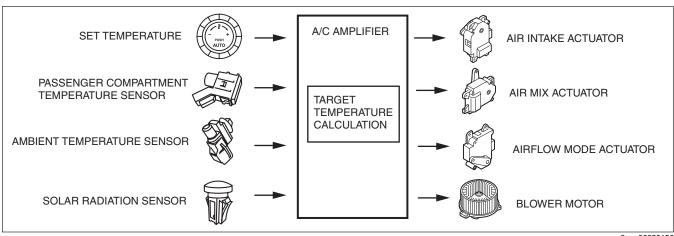
<sup>\*1 :</sup> Warm-up correction prioritized
\*2 : Increases airflow to a level closer to current condition \*3 : Decreases airflow to a level closer to current condition

#### Airflow mode control, air intake control, A/C compressor control

| Operation switch                |                | Airflow mode control Control prior to switch operation |                | Air intake control  Control prior to switch operation |                      | A/C compressor control  Control prior to switch operation |                         |
|---------------------------------|----------------|--------------------------------------------------------|----------------|-------------------------------------------------------|----------------------|-----------------------------------------------------------|-------------------------|
|                                 |                |                                                        |                |                                                       |                      |                                                           |                         |
|                                 |                | Fan switch                                             | UP             | Automatic control                                     | No change            | No change                                                 | No change               |
| i an switch                     | DOWN           | Automatic control                                      | No change      | No change                                             | No change            | Automatic control                                         | No change               |
| Airflow mode selector switch    |                | Manual control                                         | Manual control | Manual<br>control <sup>*2</sup>                       | No change            | Manual<br>control <sup>*3</sup>                           | No change <sup>*3</sup> |
| Defros                          | ster switch    | DEFROSTER                                              | DEFROSTER      | Defroster correction                                  | Defroster correction | Defroster correction                                      | Defroster correction    |
| A/C                             | switch         | Automatic control                                      | No change      | Automatic control                                     | No change            | Manual control                                            | Manual control          |
| REC/FRESH switch                |                | Automatic control                                      | No change      | Manual control                                        | Manual control       | Automatic control                                         | No change               |
| Tamananaku                      | 18 (left end)  | Automatic control                                      | No change      | Automatic control                                     | No change            | Automatic control                                         | No change               |
| Temperatu<br>re control<br>dial | 19—31          | Automatic control                                      | No change      | Automatic control                                     | No change            | Automatic control                                         | No change               |
| G/G/                            | 32 (right end) | Automatic control                                      | No change      | Automatic control                                     | No change            | Automatic control                                         | No change               |

<sup>\*1 :</sup> Warm-up correction prioritized

#### TARGET TEMPERATURE OUTLINE [FULL-AUTO AIR CONDITIONER]


id0740a1105800

#### **Features**

• The A/C amplifier calculates the target temperature (temperature to stabilize set temperature) based on input from each sensor and the temperature control dial to control each actuator and the blower motor.

#### TARGET TEMPERATURE BLOCK DIAGRAM [FULL-AUTO AIR CONDITIONER]

id0740a1105600



<sup>2 :</sup> If operated during defroster mode, returns to condition prior to defroster selection. However, if the REC/ FRESH switch is operated during defroster mode, there is no change.

is operated during defroster mode, returns to condition prior to defroster selection. However, if the A/C switch is operated during defroster mode, there is no change.

#### TARGET TEMPERATURE OPERATION [FULL-AUTO AIR CONDITIONER]

#### **Target Temperature Calculation**

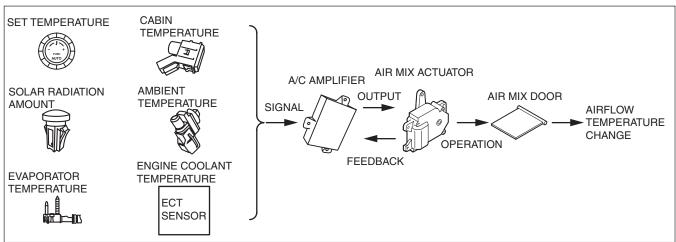
• The target temperature is calculated using the following formula based on input from the cabin temperature sensor, the ambient temperature sensor and the solar radiation sensor, in addition to the temperature set by the climate control unit.

Target temperature =  $(K_1 \times S_1 \times K_2 \times K_2 \times K_3 \times K_4 \times$ solar radiation temperature) + K<sub>5</sub> + C

K<sub>1</sub>-K<sub>5</sub>: Control coefficient C: Correction coefficient

#### AIRFLOW TEMPERATURE CONTROL OUTLINE [FULL-AUTO AIR CONDITIONER]

id0740a1102100


id0740a1105700

#### **Features**

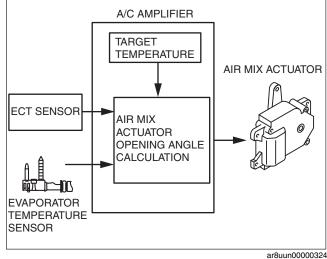
 The airflow temperature is consistently controlled automatically. The A/C amplifier controls the airflow temperature by the air mix actuator.

#### AIRFLOW TEMPERATURE CONTROL SYSTEM DIAGRAM [FULL-AUTO AIR CONDITIONER]

id0740a1102200



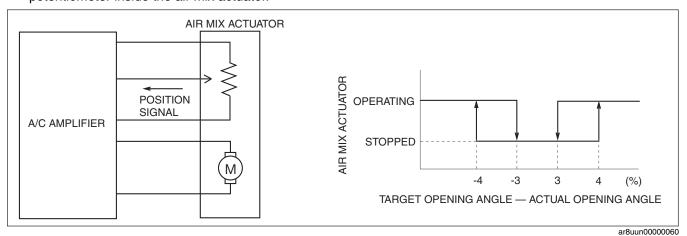
ar8uun00000323


id0740a1102300

#### AIRFLOW TEMPERATURE CONTROL OPERATION [FULL-AUTO AIR CONDITIONER]

# Airflow Temperature Automatic Control

 The A/C amplifier calculates the air mix actuator stop position (airflow temperature) by adding the correction input from the ECT sensor and evaporator temperature sensor to the target temperature that was calculated based on the set temperature and input from each sensor, operating the actuator.


 The actuator stop position moves towards MAX COLD as the input temperature (heater core temperature) from the ECT sensor increases, and it moves towards MAX HOT as the input temperature from the evaporator temperature sensor (evaporator temperature) decreases.



#### Correction

#### Air mix actuator stop position correction

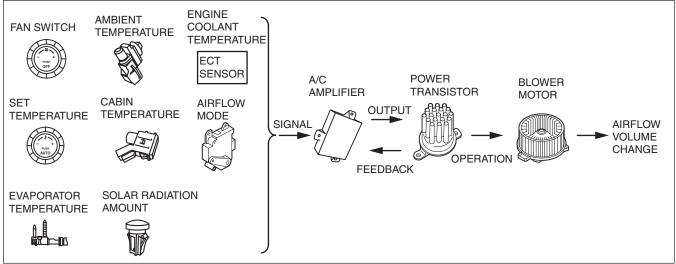
• The A/C amplifier maintains the actuator at the stop position calculated based on the position signal from the potentiometer inside the air mix actuator.



#### MAX HOT and MAX COLD correction

 When the set temperature is at 32.0, the air mix actuator becomes MAX HOT, when it is at 18.0, it becomes MAX COLD.

#### AIRFLOW VOLUME CONTROL OUTLINE [FULL-AUTO AIR CONDITIONER]


id0740a1102400

#### Faaturas

• The airflow volume control includes the airflow volume automatic and manual controls, and the A/C amplifier controls the power transistor to adjust the blower air volume.

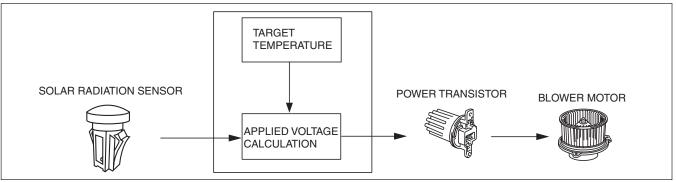
#### AIRFLOW VOLUME CONTROL SYSTEM DIAGRAM [FULL-AUTO AIR CONDITIONER]

id0740a1102500



ar8uun00000325

#### AIRFLOW VOLUME CONTROL OPERATION [FULL-AUTO AIR CONDITIONER]


id0740a1102600

#### **Order of Priority for Controls**

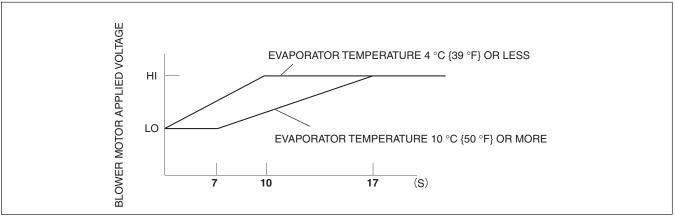
- 1. Blower motor correction at start
- 2. Airflow volume manual control
- 3. MAX HOT and MAX COLD correction
- 4. Airflow volume automatic control

#### **Airflow Volume Automatic Control**

• The A/C amplifier calculates the applied voltage to the blower motor based on the input from the solar radiation sensor and the target temperature, and outputs the drive signal to the power transistor. However, the warm-up correction and the mild start correction take precedence under the operation conditions of the warm-up correction and the mild start correction.



ar8uun00000326


• Applied voltage to the blower motor is as follows.

| Air volume level | Blower motor applied voltage (V) |
|------------------|----------------------------------|
| 1                | 3.4                              |
| 2                | 3.7                              |
| 3                | 4.1                              |
| 4                | 4.4                              |
| 5                | 4.7                              |
| 6                | 5.0                              |
| 7                | 5.3                              |
| 8                | 5.7                              |
| 9                | 6.0                              |
| 10               | 6.3                              |
| 11               | 6.6                              |
| 12               | 7.0                              |
| 13               | 7.3                              |
| 14               | 7.6                              |
| 15               | 7.9                              |
| 16               | 8.2                              |
| 17               | 8.5                              |
| 18               | 8.9                              |
| 19               | 9.2                              |
| 20               | 9.5                              |
| 21               | 9.8                              |
| 22               | 10.1                             |
| 23               | 10.5                             |
| 24               | 10.8                             |
| 25               | 11.1                             |
| 26               | 11.4                             |
| 27               | 11.7                             |
| 28               | 12.1                             |
| 29               | 12.4                             |
| 30               | 12.7                             |
| 31 (MAX HI)      | B+                               |

#### Correction

#### Mild start correction

Controls blower motor applied voltage for a maximum of 17 s when the blower motor is started in summer to
prevent discomfort caused by a high volume of hot air blown from the blow-off opening. However, the mild start
correction is not performed when the airflow is in a mode other than VENT, the A/C mode is off, or the target
temperature is high.



ar8uun00000063

#### Warm-up correction

• Controls blower motor applied voltage in accordance with the increase in engine coolant temperature to prevent discomfort caused by a high volume of cold air blown from the blow-off opening. However, the warm-up correction is not performed in a mode other than HEAT or HEAT/DEF, or when the target temperature is low.

#### MAX HOT and MAX COLD correction


 If the set temperature is at 32.0 or 18.0, the blower motor applied voltage is fixed at HI.
 However, during the warm-up correction, the MAX HOT correction is not performed.

#### **Defroster correction**

 When the defroster switch is turned on, air volume is increased by adding blower motor applied voltage (2 V) to improve defrosting.

#### **Burn prevention function at start**

If the blower motor is started from a stopped condition with a blower motor applied voltage at 4.0 V or more, the blower motor applied voltage is fixed at 4.0 V for 2 s to prevent blower motor burning due to excess electrical current.



ar8uun00000064

#### **Airflow Volume Manual Control**

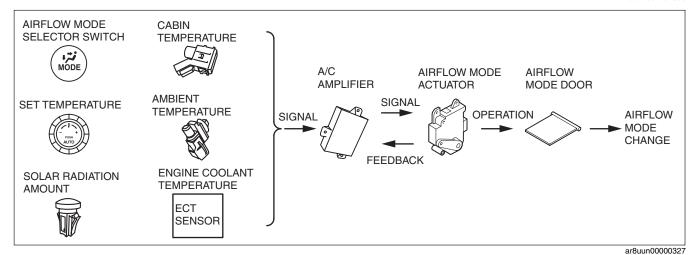
• The blower motor applied voltage (air volume) can be switched between seven steps by operation of the fan switch.

| Fan switch | Blower motor applied voltage |
|------------|------------------------------|
| 1st speed  | 3.4 V                        |
| 2nd speed  | 5.0 V                        |
| 3rd speed  | 6.6 V                        |
| 4th speed  | 8.2 V                        |
| 5th speed  | 9.8 V                        |
| 6th speed  | 11.4 V                       |
| 7th speed  | B+                           |

#### AIRFLOW MODE CONTROL OUTLINE [FULL-AUTO AIR CONDITIONER]

id0740a1102700

#### Features


 The airflow mode control includes the airflow mode automatic and manual controls, and the A/C amplifier controls the airflow mode actuator to switch the blower mode.

07-40

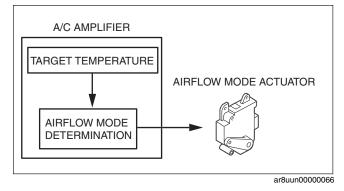
# CONTROL SYSTEM [FULL-AUTO AIR CONDITIONER]

#### AIRFLOW MODE CONTROL SYSTEM DIAGRAM [FULL-AUTO AIR CONDITIONER]

id0740a1102800



#### AIRFLOW MODE CONTROL OPERATION [FULL-AUTO AIR CONDITIONER]


id0740a1102900

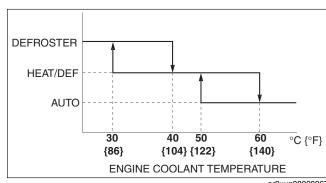
#### **Order of Priority for Controls**

- The airlflow mode control operates according to the following order of priority.
  - 1. Warm-up correction
  - 2. Airflow mode manual control
  - 3. MAX HOT and MAX COLD Correction
  - 4. Airflow mode automatic control

#### **Airflow Mode Automatic Control**

- The A/C amplifier calculates the mode actuator stop position (airflow mode) based on the target temperature operating the actuator.
- If the target temperature is high, the actuator stop position is set to HEAT, if the temperature is low, it is set to VENT.




#### Correction

#### Warm-up correction

• Switches the airflow mode after the engine is started in accordance with the increase in engine coolant temperature to prevent discomfort caused by cold air blown around the front passenger feet area.

#### **MAX HOT and MAX COLD correction**

 When the set temperature is at 32.0, the airflow mode is set to HEAT, when it is at 18.0, it is set to vent.

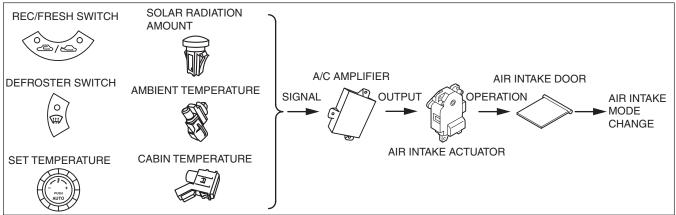


ar8uun00000067

#### Airflow Mode Manual Control

The airflow mode can be switched by operating the airflow mode selector switch and the defroster switch.

#### AIR INTAKE CONTROL OUTLINE [FULL-AUTO AIR CONDITIONER]


id0740a1103300

#### **Features**

• The air intake control includes the air intake automatic and manual controls, and the A/C amplifier controls the air intake actuator to switch the air intake mode.

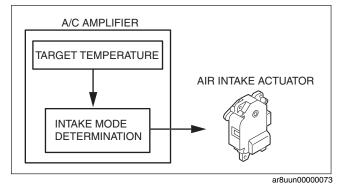
#### AIR INTAKE CONTROL SYSTEM DIAGRAM [FULL-AUTO AIR CONDITIONER]

id0740a1103400



ar8uun00000330

#### AIR INTAKE CONTROL OPERATION [FULL-AUTO AIR CONDITIONER]


id0740a1103500

#### **Order of Priority for Controls**

- The air intake control operates according to the following order of priority.
  - 1. Air intake manual control
  - 2. Defroster correction
  - 3. MAX HOT and MAX COLD correction
  - 4. Air intake automatic control

#### **Air Intake Automatic Control**

- The A/C amplifier calculates the air intake actuator stop position (air intake mode) based on the target temperature operating the actuator.
- If the target temperature is high, the actuator stop position is set to FRESH, if the temperature is low, it is set to REC.



#### Correction

#### **Defroster correction**

• Sets the air intake at FRESH when the airflow mode is set to DEFROSTER, HEAT/DEF for improved defrosting.

#### MAX HOT, MAX COLD correction

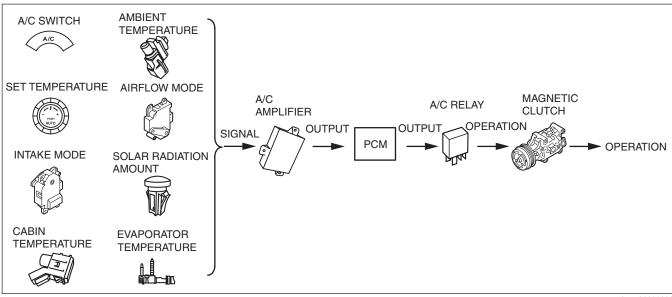
When the set temperature is at 32.0, the air intake actuator is at FRESH, when it is at 18.0, it is set to REC.

#### **Air Intake Manual Control**

• The air intake mode can be switched by operation of the REC/FRESH switch.

| Air intake mode | REC/FRESH switch operation                                        |
|-----------------|-------------------------------------------------------------------|
| FRESH           | Sets to FRESH when REC/FRESH switch is turned on during REC mode. |
| REC             | Sets to REC when REC/FRESH switch is turned on during FRESH mode. |

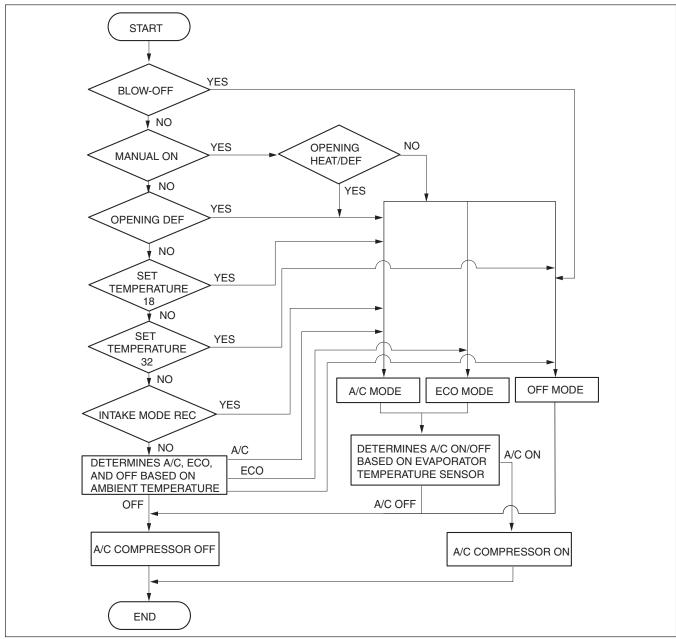
#### A/C COMPRESSOR CONTROL OUTLINE [FULL-AUTO AIR CONDITIONER]


id0740a1103000

#### **Features**

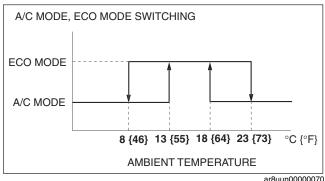
- The A/C compressor control includes the A/C compressor automatic and manual controls, and the A/C amplifier sends the A/C signal to the PCM to control the A/C compressor.
- The PCM controls the A/C relay.

#### A/C COMPRESSOR CONTROL SYSTEM DIAGRAM [FULL-AUTO AIR CONDITIONER]

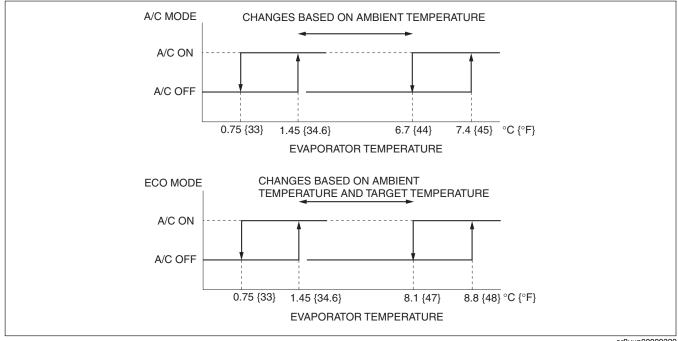

id0740a1103100



#### A/C COMPRESSOR CONTROL OPERATION [FULL-AUTO AIR CONDITIONER]


id0740a1103200

#### **Control Flow Chart**




#### A/C Compressor Automatic Control

- The A/C amplifier switches modes between the A/C mode and ECO mode based on the input signal from the ambient temperature sensor and the air intake mode. When the air intake mode is REC, the system is set to A/ C mode. If during FRESH mode the ambient temperature is low or high, the A/C mode is selected, if it is in the medium range ECO mode is selected.
- If the evaporator temperature is at a specific value during ECO mode, the A/C signal is switched on/ off (magnetic clutch on/off). When the A/C signal is on/off, the evaporator temperature is determined based on the signal from the ambient temperature sensor and the target temperature. If the target temperature is low, the on/off temperature is set low, if it is high, the on/off temperature is set high. If the ambient temperature is high and increased air conditioning performance is required, or increased defrosting performance is required when windows fog easily due to low ambient temperature, the on/off temperature is set low. When none of the



conditions above are applied, the on/off temperature is set high. As a result, A/C performance and fuel economy during A/C operation time have been improved.



ar8uun00000329

#### Correction

#### **Defroster correction**

 When the defroster switch is turned on, the system is switched to A/C on mode to improve defrosting. MAX HOT and MAX COLD correction

• When the set temperature is at 32.0, the system is set to A/C off mode, when it is at 18.0, it is set to A/C on mode.

#### A/C Compressor Manual Control

• The A/C on mode or A/C off mode can be selected by operating the A/C switch.

# **RESTRAINTS**



OUTLINE..................08-00 AIR BAG SYSTEM................ 08-10

ON-BOARD DIAGNOSTIC ....08-02

**08-00 OUTLINE** 

RESTRAINTS ABBREVIATIONS...... 08-00-1 RESTRAINTS FEATURES ...... 08-00-1

**RESTRAINTS ABBREVIATIONS** 

id080000100100

| DLC | Data Link Connector            |
|-----|--------------------------------|
| DTC | Diagnostic Trouble Code        |
| IG  | Ignition                       |
| LH  | Left Hand                      |
| PAD | Passenger Air Bag Deactivation |
| RH  | Right Hand                     |
| SAS | Sophisticated Air Bag Sensor   |
|     |                                |

id080000100200

#### **RESTRAINTS FEATURES**

- The shape of the driver-side air bag module has changed.
- The side air bag module installation position has been changed corresponding to the seat modification.
- The PAD indicator light has been positioned in the information display.

08-00

# **ON-BOARD DIAGNOSTIC**

# 08-02 ON-BOARD DIAGNOSTIC

| ON-BOARD DIAGNOSTIC |         | DTC Table | 08-02–1 |
|---------------------|---------|-----------|---------|
| SYSTEM FUNCTION     | 08-02-1 |           |         |

#### **ON-BOARD DIAGNOSTIC SYSTEM FUNCTION**

id080200300300

#### **DTC Table**

| DTC Table        |    | 770                              |                  |                                                                              |
|------------------|----|----------------------------------|------------------|------------------------------------------------------------------------------|
|                  |    | DTC Air bag system warning light |                  |                                                                              |
| M-MDS<br>display |    | Flashing pattern                 | Priority ranking | System malfunction location                                                  |
| B1013            | 16 |                                  | 17               | Seat weight sensor calibration error                                         |
| B1017            | 14 |                                  | 3                | Deployment prohibited because configuration is not set                       |
| B1231            | 13 |                                  | 2                | SAS control module activation (deployment) control freeze                    |
| B1342            |    | Continuously illuminated         | 1                | SAS control module (DTC 12 detection circuit malfunction)                    |
|                  | _  | Continuously illuminated         | 1                | Air bag system warning light circuit open                                    |
| B1869            |    | Does not illuminate              | _                | Air bag system warning light circuit short to body ground                    |
| B1870            | _  | Continuously illuminated         | 1                | Air bag system warning light circuit short to power supply                   |
| B1877            |    |                                  |                  | Driver-side pre-tensioner seat belt circuit resistance high                  |
| B1878            | 33 |                                  | 12               | Driver-side pre-tensioner seat belt circuit short to power supply            |
| B1879            |    |                                  |                  | Driver-side pre-tensioner seat belt circuit short to body ground             |
| B1881            |    |                                  |                  | Passenger-side pre-tensioner seat belt circuit resistance high               |
| B1882            | 34 |                                  | 11               | Passenger-side pre-tensioner seat belt circuit short to power supply         |
| B1883            |    |                                  |                  | Passenger-side pre-tensioner seat belt circuit short to body ground          |
| B1884            | 18 |                                  | 20               | Passenger air bag deactivation (PAD) indicator open or short to body ground  |
| B1885            | 33 |                                  | 12               | Driver-side pre-tensioner seat belt circuit resistance low                   |
| B1886            | 34 |                                  | 11               | Passenger-side pre-tensioner seat belt circuit resistance low                |
| B1890            | 18 |                                  | 20               | Passenger air bag deactivation (PAD) indicator circuit short to power supply |

08-02

# **ON-BOARD DIAGNOSTIC**

|                  | DTC Air bag system warning light |                  |                  |                                                                             |
|------------------|----------------------------------|------------------|------------------|-----------------------------------------------------------------------------|
| M-MDS<br>display |                                  | Flashing pattern | Priority ranking | System malfunction location                                                 |
| B1913            | 19                               |                  | 10               | Driver-side air bag module (inflator No.1) circuit short to body ground     |
| B1313            | 21                               |                  | 9                | Passenger-side air bag module (inflator No.1) circuit short to body ground  |
| B1916            | 19                               |                  | 10               | Driver-side air bag module (inflator No.1) circuit short to power supply    |
| B1925            | 21                               |                  | 9                | Passenger-side air bag module (inflator No.1) circuit short to power supply |
| B1932            | 19                               |                  | 10               | Driver-side air bag module (inflator No.1) circuit resistance high          |
| B1933            | 21                               |                  | 9                | Passenger-side air bag module (inflator No.1) circuit resistance high       |
| B1934            | 19                               |                  | 10               | Driver-side air bag module (inflator No.1) circuit resistance low           |
| B1935            | 21                               |                  | 9                | Passenger-side air bag module (inflator No.1) circuit resistance low        |
| B1992            |                                  |                  |                  | Driver-side side air bag module circuit short to power supply               |
| B1993            | 22                               | תח חח ר          | 4.4              | Driver-side side air bag module circuit short to body ground                |
| B1994            | ~~                               |                  | 14               | Driver-side side air bag module circuit resistance high                     |
| B1995            |                                  |                  |                  | Driver-side side air bag module circuit resistance low                      |
| B1996            |                                  |                  |                  | Passenger-side side air bag module circuit short to power supply            |
| B1997            | 23                               | nn nnn r         | 13               | Passenger-side side air bag module circuit short to body ground             |
| B1998            | 23                               |                  | 10               | Passenger-side side air bag module circuit resistance high                  |
| B1999            |                                  |                  |                  | Passenger-side side air bag module circuit resistance low                   |
| B2228            | 19                               |                  | 10               | Driver-side air bag module (inflator No.2) circuit short to body ground     |
| B2229            | 21                               |                  | 9                | Passenger-side air bag module (inflator No.2) circuit short to body ground  |
| B2230            | 19                               |                  | 10               | Driver-side air bag module (inflator No.2) circuit short to power supply    |

# 08-02

# **ON-BOARD DIAGNOSTIC**

|                  |      | DTC                                            |              |                                                                                |
|------------------|------|------------------------------------------------|--------------|--------------------------------------------------------------------------------|
| M-MDS<br>display |      | Air bag system warning light  Flashing pattern | Priority     | System malfunction location                                                    |
| B2231            | 21   |                                                | ranking<br>9 | Passenger-side air bag module (inflator No.2) circuit short to power supply    |
| B2232            | 19   |                                                | 10           | Driver-side air bag module (inflator No.2) circuit resistance high             |
| B2233            | 21   |                                                | 9            | Passenger-side air bag module (inflator No.2) circuit resistance high          |
| B2234            | 19   |                                                | 10           | Driver-side air bag module (inflator No.2) circuit resistance low              |
| B2235            | 21   |                                                | 17           | Passenger-side air bag module (inflator No.2) circuit resistance low           |
| B2290            | 16   |                                                | 17           | Passenger sensing system malfunction                                           |
| B2296            | 42   |                                                | 8            | Crash zone sensor (communication error, internal circuit abnormal)             |
| B2434            | -1   |                                                | 10           | Driver-side front buckle switch circuit short to ground                        |
| B2435            | 51   |                                                | 18           | Driver-side front buckle switch circuit resistance not within specification    |
| B2438            | - 52 |                                                | 19           | Passenger-side front buckle switch circuit short to ground                     |
| B2439            | 52   |                                                | 19           | Passenger-side front buckle switch circuit resistance not within specification |
| B2444            | 43   |                                                | 7            | Driver-side side air bag sensor (internal circuit abnormal)                    |
| B2445            | 44   |                                                | 6            | Passenger-side side air bag sensor (internal circuit abnormal)                 |
| B2477            | 54   |                                                | 4            | Configuration error                                                            |
| B2691            | 51   |                                                | 18           | Driver-side front buckle switch circuit open or short to power supply          |
| B2692            | 52   |                                                | 19           | Passenger-side front buckle switch circuit open or short to power supply       |

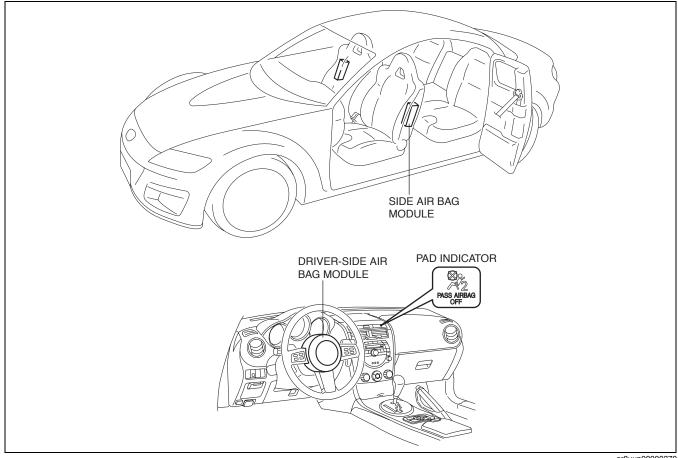
# **ON-BOARD DIAGNOSTIC**

|                  | 1                                 | DTC Air bag system warning light |                             |                                                                        |
|------------------|-----------------------------------|----------------------------------|-----------------------------|------------------------------------------------------------------------|
| M-MDS<br>display | Flashing pattern Priority ranking |                                  | System malfunction location |                                                                        |
| B2773            |                                   |                                  |                             | Driver-side curtain air bag module circuit resistance low              |
| B2774            | 24                                |                                  | 16                          | Driver-side curtain air bag module circuit resistance high             |
| B2775            | 24                                |                                  | 10                          | Driver-side curtain air bag module circuit short to body ground        |
| B2776            |                                   |                                  |                             | Driver-side curtain air bag module circuit short to power supply       |
| B2777            |                                   |                                  |                             | Passenger-side curtain air bag module circuit resistance low           |
| B2778            | 25                                | nn nnnnn r                       | 15                          | Passenger-side curtain air bag module circuit resistance high          |
| B2779            | 23                                |                                  | 15                          | Passenger-side curtain air bag module circuit short to body ground     |
| B2780            |                                   |                                  |                             | Passenger-side curtain air bag module circuit short to power supply    |
| B2867            | 31                                |                                  | 5                           | Poor connection of any SAS control module connectors                   |
| C1947            |                                   |                                  |                             | Seat track position sensor circuit short to body ground                |
| C1948            | 49                                |                                  | 21                          | Seat track position sensor circuit resistance not within specification |
| C1981            |                                   |                                  |                             | Seat track position sensor circuit open or short to power supply       |
| U2017            | 43                                |                                  | 7                           | Driver-side side air bag sensor (communication error)                  |
| U2018            | 44                                |                                  | 6                           | Passenger-side side air bag sensor (communication error)               |

#### 08-10

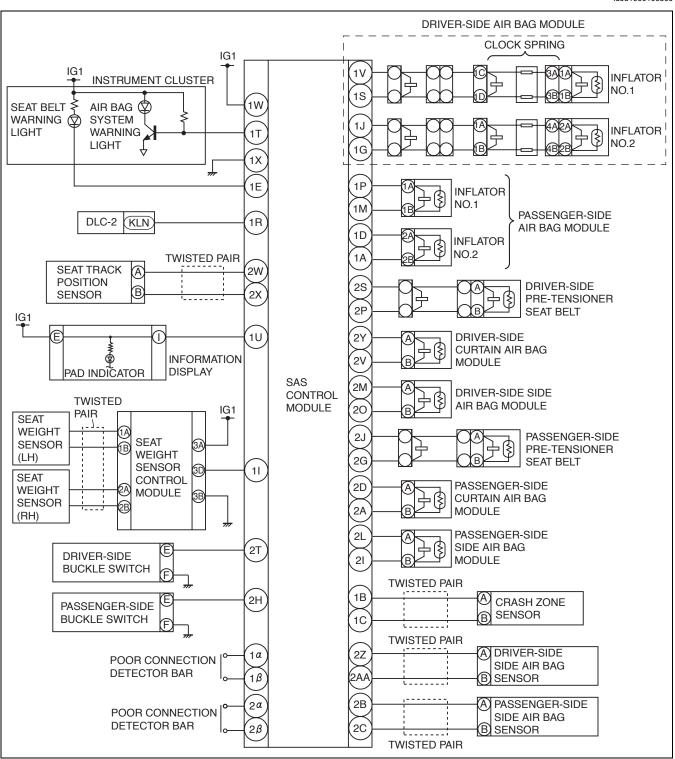
# 08-10 AIR BAG SYSTEM

| AIR BAG SYSTEM OUTLINE 08-10-1 AIR BAG SYSTEM | SIDE AIR BAG MODULE CONSTRUCTION/OPERATION | 08-10–4 |
|-----------------------------------------------|--------------------------------------------|---------|
| STRUCTURAL VIEW 08-10-1                       | Construction                               |         |
| AIR BAG SYSTEM WIRING DIAGRAM . 08-10-2       | Operation                                  | 08-10-4 |
| DRIVER-SIDE AIR BAG MODULE                    | •                                          |         |
| CONSTRUCTION/OPERATION 08-10-3                |                                            |         |
| Inflator Operation 08-10-3                    |                                            |         |


#### **AIR BAG SYSTEM OUTLINE**

id081000100100

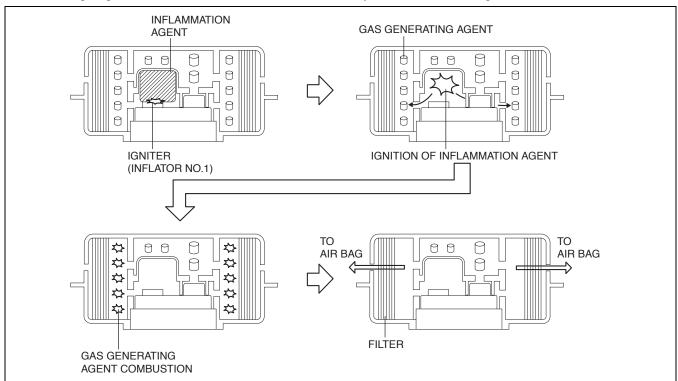
- The shape of the driver-side air bag module has changed.
- The side air bag module installation position has been changed corresponding to the seat modification.
- The PAD indicator light has been positioned in the information display.


#### **AIR BAG SYSTEM STRUCTURAL VIEW**

id081000100200



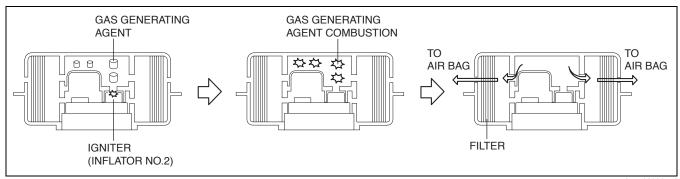
#### AIR BAG SYSTEM WIRING DIAGRAM


id081000100300



#### id081000100900

# Inflator Operation Inflator No.1


- 1. When the driver-side air bag module receives an operation (deployment) signal from the SAS control module, the igniter built into inflator No.1 builds up heat and ignites the inflammation agent.
- 2. The ignition of the inflammation agent causes the combustion of a gas-generating agent which releases nitrogen gas.
- 3. The nitrogen gas is cooled at the filter and the filtrate is injected into the air bag.



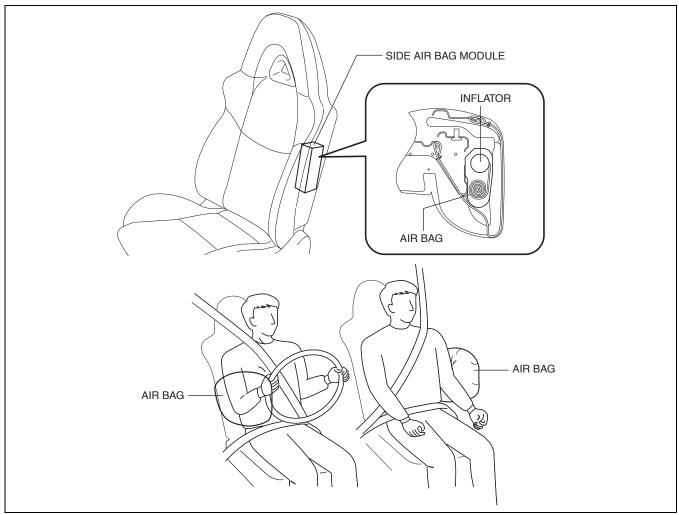
ar8uun00000169

#### Inflator No.2

- 1. When the driver-side air bag module receives an operation (deployment) signal from the SAS control module, the igniter built into inflator No.2 builds up heat and ignites the inflammation agent.
- 2. The ignition of the inflammation agent causes the combustion of a gas-generating agent which releases nitrogen gas.
- 3. The nitrogen gas is cooled at the filter and the filtrate is injected into the air bag.



ar8uun00000170

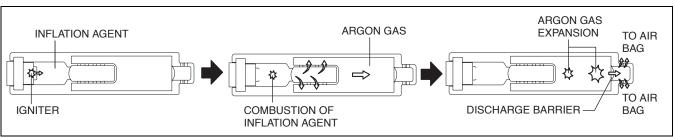

08-10

#### SIDE AIR BAG MODULE CONSTRUCTION/OPERATION

id081000100500

#### Construction

- Side air bag modules are installed on the outboard sides of the front seat backs.
- The side air bag module is composed of an inflator, module cover and air bag.
- When an air bag deploys, the side air bag module cover is spread apart by the generation of argon gas from the inflator, inflating the air bag.




ar8uun00000167

#### Operation

#### Inflator operation

- 1. The igniter built into the inflator begins to build up heat when the operation (deployment) signal is sent from the SAS control module. The inflation agent is ignited by the build up of heat in the igniter.
- 2. The argon gas expands due to the heat of the ignited inflation agent.
- 3. The expanding argon gas breaks the discharge barrier, is cooled and filtered by the filter, and then injected into the air bag.



#### 09-00

# **BODY & ACCESSORIES**



| OUTLINE09-00             | INSTRUMENTATION/     |
|--------------------------|----------------------|
| LIGHTING SYSTEMS 09-18   | DRIVER INFO 09-22    |
| WIPER/WASHER SYSTEM09-19 | CONTROL SYSTEM 09-40 |
| ENTERTAINMENT09-20       |                      |

# **09-00 OUTLINE**

#### **BODY AND ACCESSORIES ABBREVIATIONS**

id090000100100

| ABS    | Antilock Brake System     |
|--------|---------------------------|
| ACC    | Accessories               |
| AT     | Automatic Transmission    |
| BCM    | Body Control Module       |
| CAN    | Controller Area Network   |
| CM     | Control Module            |
| DLC    | Data Link Connector       |
| DSC    | Dynamic Stability Control |
| DTC    | Diagnostic Trouble Code   |
| EPS    | Electric Power Steering   |
| GND    | Ground                    |
| GPS    | Global Positioning System |
| DRL    | Daytime Running Light     |
| HF/TEL | Hands-Free Telephone      |
| HI     | High                      |
| IG     | Ignition                  |
| LCD    | Liquid Crystal Display    |
| LED    | Light Emitting Diode      |
|        | •                         |

| eft Front<br>eft Hand          |
|--------------------------------|
| oft Hand                       |
| en i ianu                      |
| ow                             |
| eft Rear                       |
| lotor                          |
| lanual Transmission            |
| witch Off                      |
| witch On                       |
| owertrain Control Module       |
| arameter Identification        |
| ight Front                     |
| ight Hand                      |
| ight Rear                      |
| ophisticated Air Bag Sensor    |
| witch                          |
| ransmission Control Module     |
| ail Number Side Lights         |
| ire Pressure Monitoring System |
| i i i i                        |

#### **BODY AND ACCESSORIES FEATURES**

id090000100300

| Improved marketability | SIRIUS satellite radio system adopted                                                                                                                                                                                                                                                 |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Improved convenience   | <ul> <li>Auto light system adopted</li> <li>Auto wiper system adopted</li> <li>Hands-free telephone (HF/TEL) system adopted</li> <li>Variable red zone has been adopted that changes the red zone display of the engine speed according to the engine coolant temperature.</li> </ul> |  |  |

# **LIGHTING SYSTEMS**

# 09-18 LIGHTING SYSTEMS

| LIGHTING SYSTEMS OUTLINE 09-18-2    | AUTO LIGHT SENSOR                        |
|-------------------------------------|------------------------------------------|
| LIGHTING SYSTEMS                    | OPERATION                                |
| SPECIFICATION                       | Function Description                     |
| LIGHTING SYSTEMS STRUCTURAL         | AUTO LIGHT-OFF SYSTEM                    |
| VIEW 09-18-3                        | OUTLINE09-18-13                          |
| FRONT COMBINATION LIGHT             | AUTO LIGHT-OFF SYSTEM WIRING             |
| CONSTRUCTION 09-18-4                | DIAGRAM09-18-14                          |
| FRONT FOG LIGHT                     | Auto Light/wiper Control Module 09-18-14 |
| CONSTRUCTION 09-18-4                | AUTO LIGHT-OFF SYSTEM                    |
| AUTO LIGHT SYSTEM OUTLINE 09-18-5   | OPERATION                                |
| AUTO LIGHT SYSTEM STRUCTURAL        | Operation                                |
| VIEW 09-18-5                        | Timing Chart                             |
| AUTO LIGHT SYSTEM WIRING            | DRL (DAYTIME RUNNING LIGHT)              |
| DIAGRAM 09-18-6                     | SYSTEM OUTLINE09-18-17                   |
| AUTO LIGHT SYSTEM                   | DRL (DAYTIME RUNNING LIGHT)              |
| OPERATION                           | SYSTEM WIRING DIAGRAM09-18-17            |
| Operation                           | DRL (DAYTIME RUNNING LIGHT)              |
| Illumination operation 09-18-9      | SYSTEM OPERATION                         |
| Lights off operation                | Operation Condition09-18-18              |
| Fail-Safe Function 09-18-10         | Illumination Operation                   |
| AUTO LIGHT SENSOR FUNCTION 09-18-11 | FRONT SIDE TURN LIGHT                    |
|                                     | CONSTRUCTION                             |
|                                     | REAR COMBINATION LIGHT                   |
|                                     | CONSTRUCTION                             |

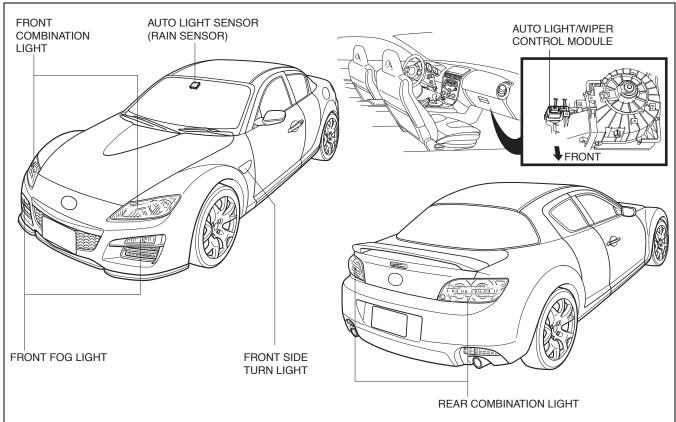
09-18

# **LIGHTING SYSTEMS**

#### **LIGHTING SYSTEMS OUTLINE**

id091800100100

| Improved marketability | <ul> <li>A headlight with built-in front turn light, parking light and front side marker light has been adopted for design improvement.</li> <li>Projector type headlights (low-beam) have been adopted.</li> <li>Front fog lights have been adopted. (Located in front bumper)</li> </ul> |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Improved convenience   | <ul><li>Auto light system adopted</li><li>Auto light-off system adopted</li></ul>                                                                                                                                                                                                          |  |
| Improved visibility    | <ul> <li>LEDs have been adopted for the brake/taillights.</li> <li>Built-in front side turn light has been adopted.</li> </ul>                                                                                                                                                             |  |
| System simplification  | <ul> <li>An auto light/wiper control module has been adopted in which the auto light, auto w<br/>DRL, and auto light-off systems are consolidated.</li> </ul>                                                                                                                              |  |


#### **LIGHTING SYSTEMS SPECIFICATION**

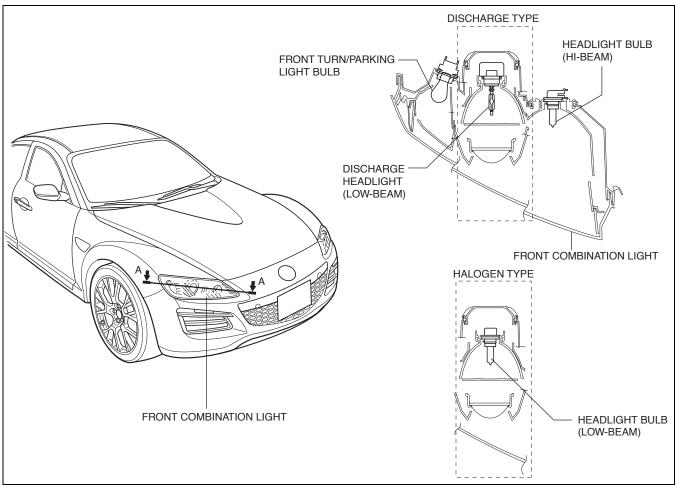
id091800100200

| Item                         |                                |                          | Specifications (W) × number |
|------------------------------|--------------------------------|--------------------------|-----------------------------|
| Exterior light bulb capacity | Headlight bulb (high-beam)     |                          | 65 × 2                      |
|                              | Headlight bulb (low-beam)      | Discharge headlight bulb | 35 × 2                      |
|                              |                                | Halogen headlight bulb   | 55 × 2                      |
|                              | Front turn /parking light bulb |                          | 27/8 × 2                    |
|                              | Front fog light bulb           |                          | 51 × 2                      |
|                              | Front side turn light bulb     |                          | 5 × 2                       |
|                              | Brake/taillight (LED)          |                          | 2.3/0.2× 2                  |
|                              | Rear turn light bulb           |                          | 21 × 2                      |
|                              | Rear side marker light bulb    |                          | 5 × 2                       |
|                              | Back-up light bulb             |                          | 16 × 2                      |

#### LIGHTING SYSTEMS STRUCTURAL VIEW

id091800100300



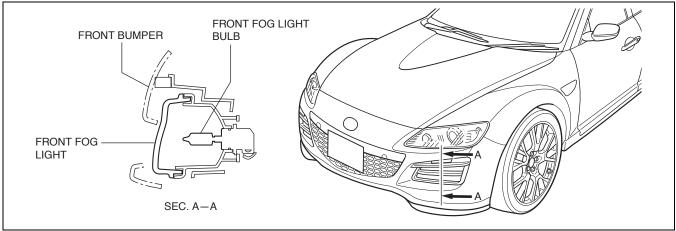

ar8uun00000291

09-18

#### FRONT COMBINATION LIGHT CONSTRUCTION

id091800100700

- A headlight with built-in front turn/parking light has been adopted for design improvement.
- Projector type headlights have been adopted.
- Discharge headlights, with a wide illumination area and projection of white light with a hue similar to sunlight, have been adopted.

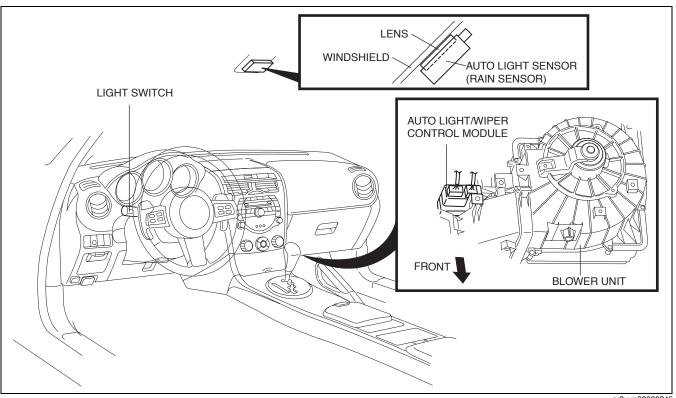



ar8uun00000243

#### FRONT FOG LIGHT CONSTRUCTION

id091800105900

• The bumper built-in type front fog light with the aiming adjustment function has been adopted.




id091800101800

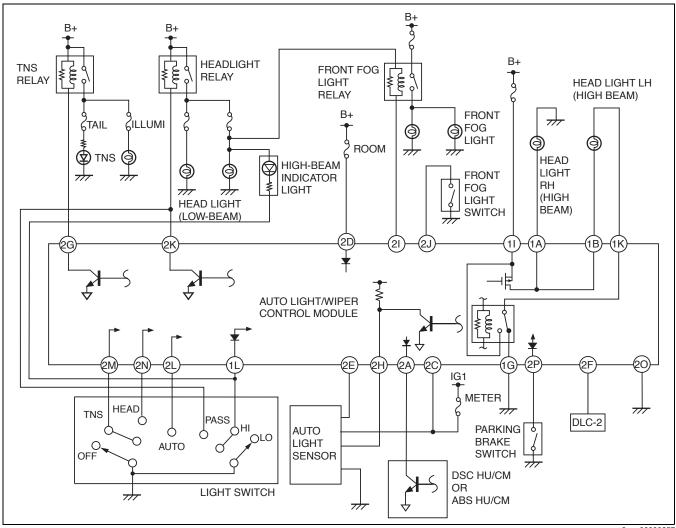
- An auto light system that automatically illuminates and turns off the headlights in any situation according to the level of light outside of the vehicle has been adopted.
- An auto light/wiper control module has been adopted in which the auto light, auto wiper, DRL, and auto light-off systems are consolidated.

#### **AUTO LIGHT SYSTEM STRUCTURAL VIEW**

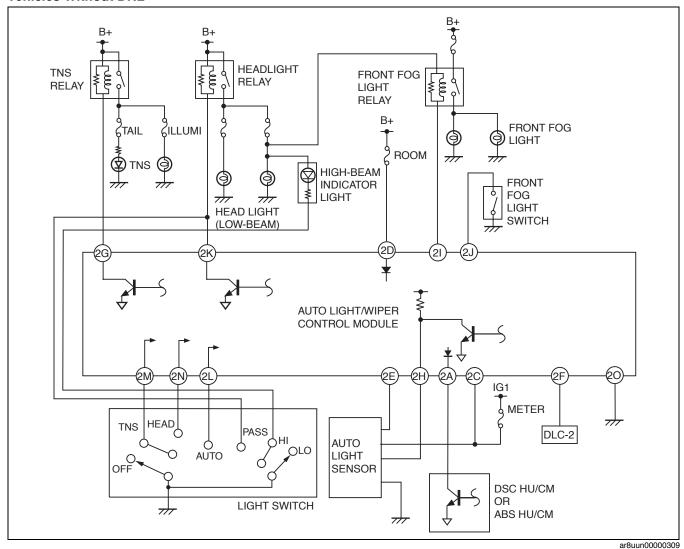
id091800101900



ar8uun00000245


09-18

09-18-5


#### **AUTO LIGHT SYSTEM WIRING DIAGRAM**

#### **Vehicles With DRL**

id091800102000



# **Vehicles Without DRL**



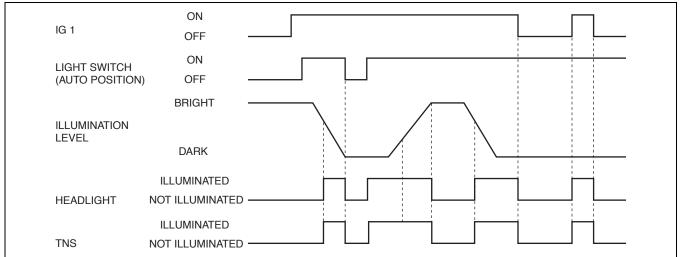
arouuriooooos

#### **AUTO LIGHT SYSTEM OPERATION**

id091800102100

#### Note

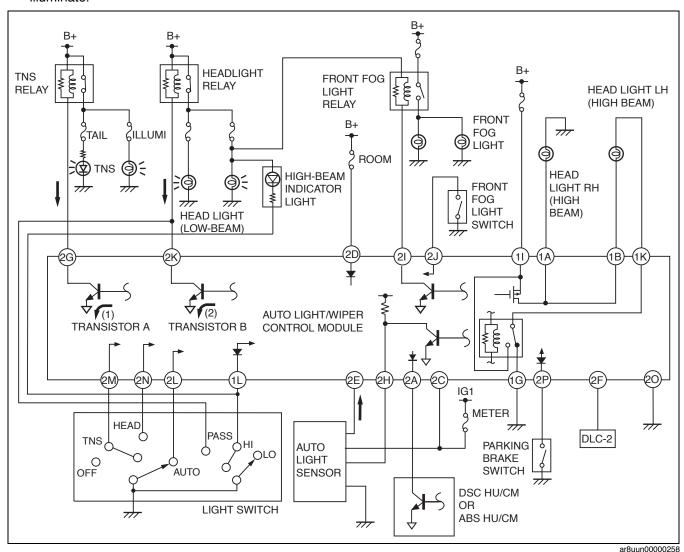
• The illumination intensity which operates the auto light system is approximate and a reference. It varies depending on conditions in the surrounding area (Weather, reflection off buildings).


# Operation

#### Illumination condition

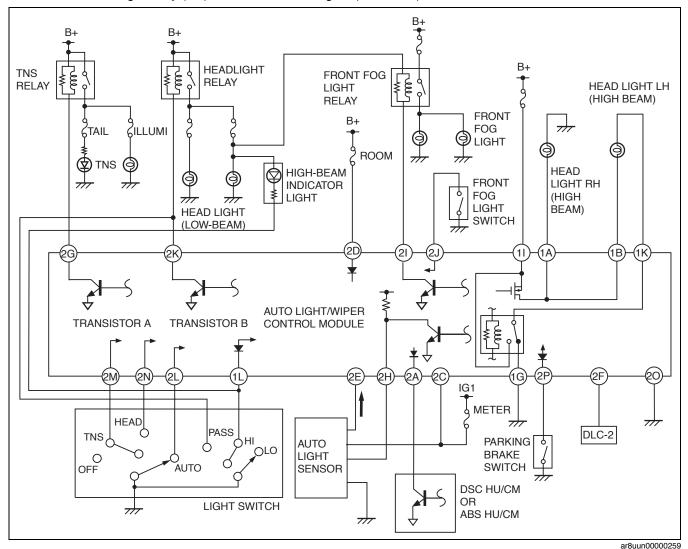
- When the ignition switch is turned to the ON position and the light switch is in the AUTO position, the headlight and tail number side lights (TNS) illuminate under the following condition:
  - The forward and upward illumination level sensors detect approx. 2,000 lux or less.

# **Lights off condition**


- When the light switch is in the AUTO position, the headlight and TNS turn off under the following conditions:
  - The forward and upward illumination level sensors detect approx. 4,000 lux or more for approx. 1.0 s.
  - The ignition switch is off.
  - The light switch is in the OFF position.



ac9uun00000531


#### Illumination operation

- 1. When the light switch is in the AUTO position the illumination sensors in the auto light sensor (installed in the windshield) detect the illumination level above and in front of the vehicle.
- 2. If the upward or forward illumination sensors detect **approx. 2,000 lux or less** in front of and above the vehicle, the headlight and TNS illumination control signal is sent to the auto light/wiper control module.
- 3. The microcomputer in the auto light/wiper control module receives the control signal and sends current (1) to transistor A, causing the transistor A to turn on.
- 4. When transistor A turns on, the TNS relay also turn on. At the same time, the TNS illuminate.
- 5. The microcomputer in the auto light/wiper control module receives the control signal and sends current (2) to transistor B, causing the transistor B to turn on.
- 6. When transistor B turns on, the headlight relay (LO) also turns on. At the same time, the headlights (low-beam) illuminate.



#### Lights off operation

- 1. When the light switch is in the AUTO position the illumination level sensors in the auto light sensor (installed in the windshield) detect the illumination level above and in front of the vehicle.
- 2. If the upward and forward illumination level sensor detect **approx**. **4,000 lux or more for 1.0 s** in front of and above the vehicle, the headlight and TNS off control signal is sent to the auto light/wiper control module.
- 3. The microcomputer in the auto light/wiper control module receives the control signal and turns off the current to transistor A, causing the TNS relay to also turn off.
- 4. When the TNS relay turns off, the TNS also turns off.
- 5. The microcomputer in the auto light/wiper control module receives the control signal and turns off the current to transistor B, causing the headlight relay (LO) to also turn off.
- 6. When the headlight relay (LO) turns off, the headlights (low-beam) also turn off.



#### **Fail-Safe Function**

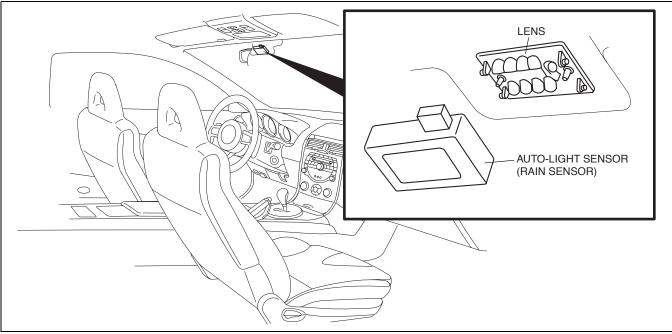
 When a auto light sensor malfunction or a communication error between the auto light sensor and auto light/ wiper control module is detected, the auto light/wiper control module initiates controls as indicated in the fail safe function table.

#### **Fail-Safe Function Table**

| Malfunctions                                                          | Fail-safe             | function                | Recovery items                                                                               |  |
|-----------------------------------------------------------------------|-----------------------|-------------------------|----------------------------------------------------------------------------------------------|--|
| Manufictions                                                          | Before operation      | After operation         | necovery items                                                                               |  |
| Auto light sensor error     Auto light sensor     communication error | Headlight illuminated | Maintains headlights on | <ul><li>Ignition switch lock position</li><li>When a auto light sensor malfunction</li></ul> |  |
|                                                                       | TNS illuminated       | Maintains TNS on        | is cleared  When communication is restored                                                   |  |
|                                                                       | Off                   | Maintains turn-off      | When communication is restored     When the light switch is in a position other than AUTO    |  |

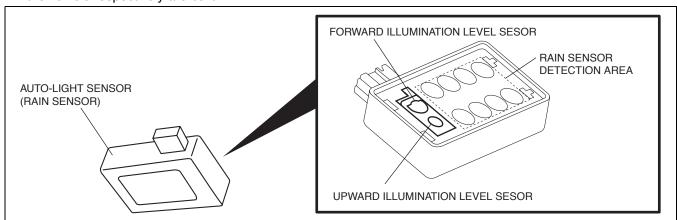
# **AUTO LIGHT SENSOR FUNCTION**

id091800102200


- The auto light sensor contains upward and forward illumination sensors which detect the level of illumination above and in front of the vehicle respectively.
- If the forward illumination level sensor detects a bright level of illumination in front of the vehicle and the upward illumination level sensor detects a dark level when the headlights are on, the microcomputer in the auto light sensor prepares for turning off the lights. If both illumination level sensors detect that is necessary to turn off the headlights, they are turned off with optimal timing.
- If the forward illumination level sensor detects a dark level of illumination in front of the vehicle and the upward illumination level sensor detects a bright level when the headlights are off, the microcomputer in the auto light sensor prepares for turning on the lights If both illumination level sensors detect that is necessary to turn on the headlights, they are turned on with optimal timing.

#### **AUTO LIGHT SENSOR OPERATION**

id091800102300


#### Caution

- In the following cases, the auto light sensor cannot detect the illumination level correctly which could cause an auto light malfunction:
  - A sticker or label is adhered to the windshield above the auto light sensor.
  - The windshield is dirty above the auto light sensor.
- The auto light sensor is installed to the lens which is installed to top center area of the windshield



ar8uun0000026

- The auto light sensor is integrated with the rain sensor as a single unit.
- The upward and forward illumination level sensors which detect the level of illumination above and in front of the vehicle respectively are built-in.



ac9uun00000591

#### **Function Description**

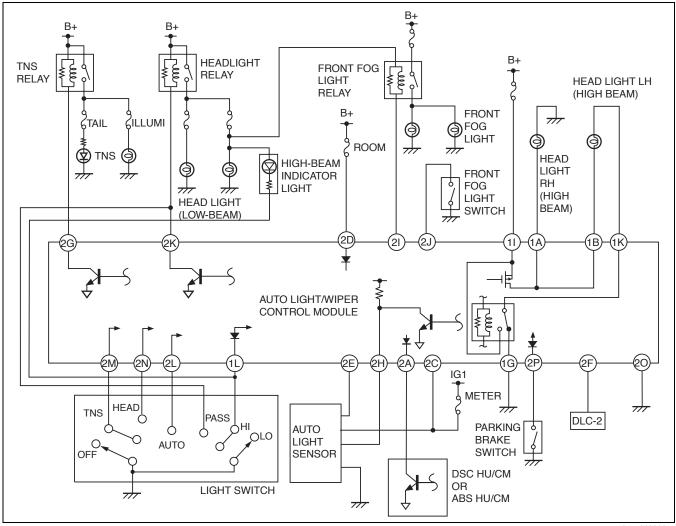
## Illumination level adjustment function

• The illumination level sensitivity can be switched between two levels using the M-MDS.

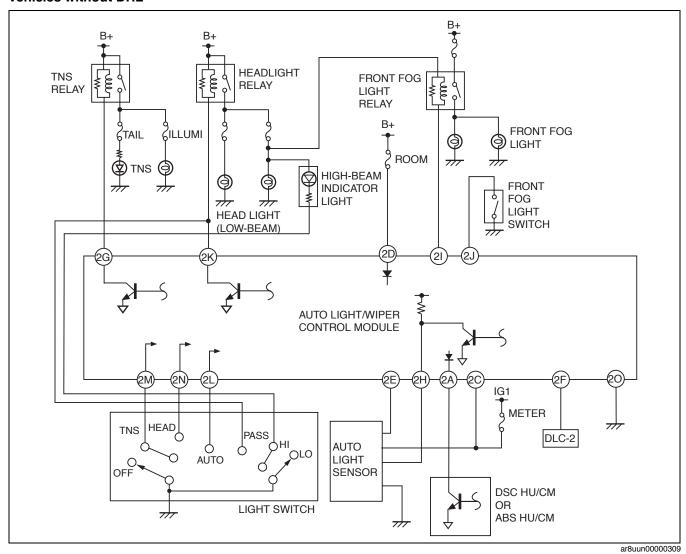
#### On-board diagnostic function

• If there is any malfunction in the auto light sensor, the auto light/wiper control module is informed of the malfunction and a DTC is detected.

#### **AUTO LIGHT-OFF SYSTEM OUTLINE**


id091800105000

- The auto light/wiper control module has an auto light-off timer function.
- The auto light/wiper control module has been adopted in which the auto light, auto wiper, DRL, and auto light-off systems are consolidated.


#### **AUTO LIGHT-OFF SYSTEM WIRING DIAGRAM**

id091800106000

#### **Auto Light/wiper Control Module** Vehicles with DRL



#### **Vehicles without DRL**



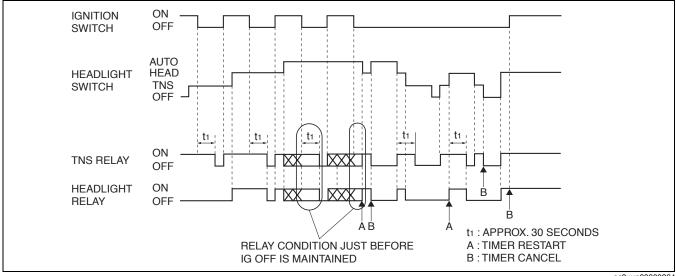
09-18-15

#### **AUTO LIGHT-OFF SYSTEM OPERATION**

id091800106200

#### Operation

• When the following conditions are satisfied, the auto light/wiper control module turns on the lights and activates the built-in timer. When the specified time has passed, the lights go off.


| Condition before operation                                                                                                                                                                                                            | Operation condition                                      | Illumination time  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------|
| <ul> <li>Ignition switch is at ON position.</li> <li>Headlight switch is at TNS or headlight position.</li> <li>Headlight switch is in AUTO position and auto light system is operating. (Vehicles with auto light system)</li> </ul> | Ignition switch is turned to LOCK or ACC position.       |                    |
| Ignition switch is at LOCK or ACC position.                                                                                                                                                                                           | Headlight switch is turned to TNS or headlight position. | Approx. 30 seconds |
| <ul> <li>Headlight switch is at TNS position and timer is operating.</li> <li>Headlight switch is at AUTO position and timer is operating. (Vehicles with auto light system)</li> </ul>                                               | Headlight switch is turned to headlight position.        |                    |

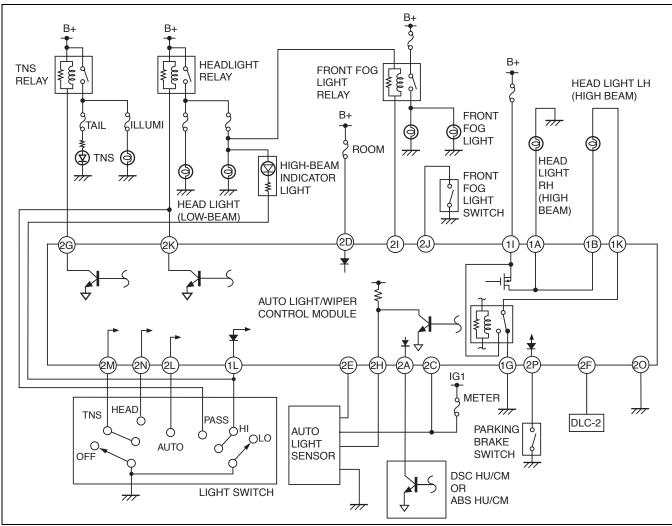
• The timer is canceled according to the following conditions, and then the system operates as follows:

| Cancel condition                                                            | Auto light-off system operation                                                                                                                                                    |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ignition switch is turned to ON position.                                   | <ul> <li>When headlight switch is at TNS position, TNS relay turns on.</li> <li>When headlight switch is at headlight position, headlight relay and TNS relay turns on.</li> </ul> |
| Headlight switch is turned off.                                             | TNS and headlight relays turn off.                                                                                                                                                 |
| Headlight switch is turned AUTO position. (Vehicles with auto light system) | TNS and headlight relays turn off.                                                                                                                                                 |

• The lights turn on when the ignition switch is at the ON position and the headlight switch is at the TNS or headlight position, even if the auto light/wiper control module is malfunctioning.

# **Timing Chart**




ac9uun00000264

id091800106100

- The DRL system automatically operates the high-beam headlights when the ignition switch is turned to the ON position and the parking brake is released.
- An auto light/wiper control module has been adopted in which the auto light, auto wiper, DRL, and auto light-off systems are consolidated.

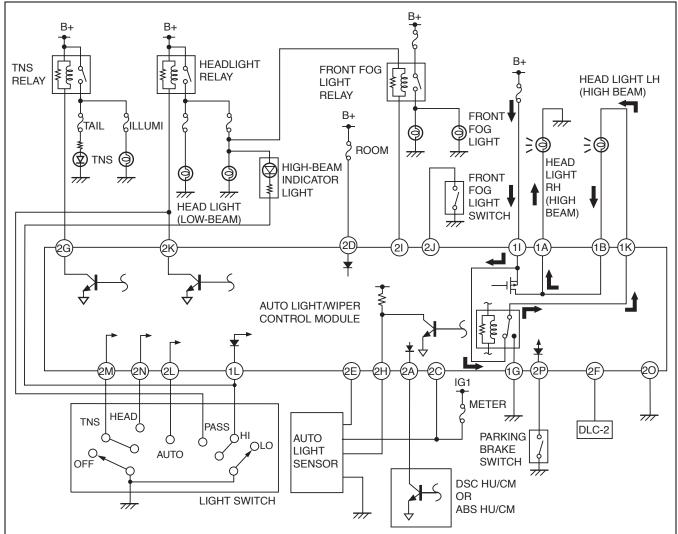
# DRL (DAYTIME RUNNING LIGHT) SYSTEM WIRING DIAGRAM

id091800109500



ar8uun00000257

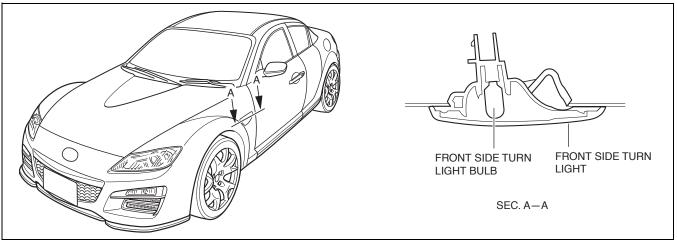
# DRL (DAYTIME RUNNING LIGHT) SYSTEM OPERATION


id091800109600

# **Operation Condition**

| Ope                | Operation condition (Input signal) |                | Operation condition of illumination (Output signal) |                       |                        |                 |   |     |   |   |   |
|--------------------|------------------------------------|----------------|-----------------------------------------------------|-----------------------|------------------------|-----------------|---|-----|---|---|---|
| Ignition<br>switch | Parking<br>brake<br>switch         | Light switch   | Flash-to-<br>pass<br>switch                         | Low-beam<br>headlight | High-beam<br>headlight | Front fog light |   |     |   |   |   |
|                    | OFF                                |                |                                                     | -                     | Illuminates<br>(DRL)   | -               |   |     |   |   |   |
|                    | OFF                                | OFF/<br>TNS    |                                                     | -                     | Illuminates<br>(DRL)   | -               |   |     |   |   |   |
| ON                 | ON                                 | Headlight (LO) |                                                     | OFF                   | OEE                    | OFF             |   | OFF | - | - | - |
| ON                 | ON                                 |                |                                                     |                       | OFF                    | -               | - | -   |   |   |   |
|                    |                                    |                |                                                     | Illuminates           | -                      | Illuminates     |   |     |   |   |   |
|                    |                                    | Headlight (HI) |                                                     | Illuminates           | Illuminates            | -               |   |     |   |   |   |
| -                  | -                                  | -              | ON                                                  | Illuminates           | Illuminates            | -               |   |     |   |   |   |

# **Illumination Operation**

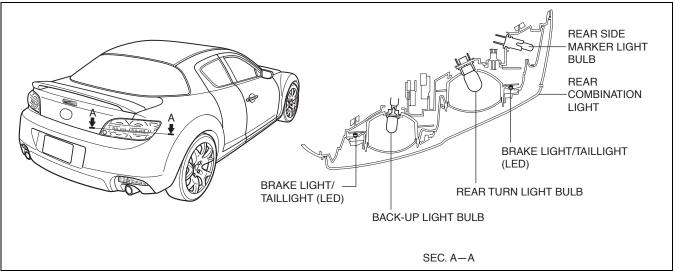

- 1. When the DRL operation conditions are met, the current flows and the DRL relay turns on.
- 2. When the DRL relay turns on, the current flows to the headlight high beam (LH) and then to the headlight high beam (RH) to turn on the headlight high beams at 50 % dim.



#### FRONT SIDE TURN LIGHT CONSTRUCTION

id091800107000

- Built-in front side turn light has been adopted for front fender panel.
  The front side turn light and front side turn light bulb are of an integrated construction.




ar8uun00000246

#### REAR COMBINATION LIGHT CONSTRUCTION

id091800100800

- LEDs have been adopted for the stop/taillights, resulting in a reduction of energy consumption.
- Rear side marker lights for the rear combination lights have been adopted to improve marketability.



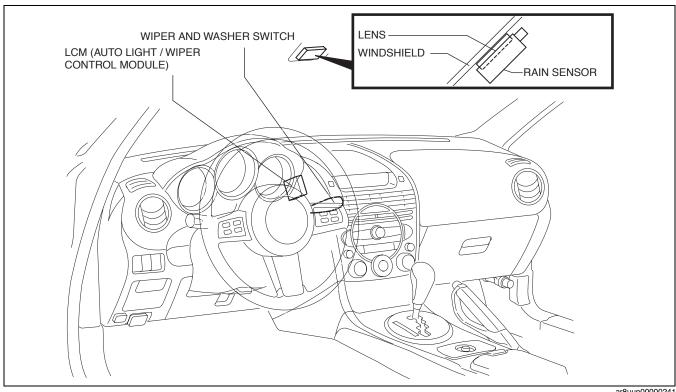
#### 09-19 **WIPER/WASHER SYSTEM**

| WIPER/WASHER SYSTEM               | RAIN SENSOR FUNCTION                   |
|-----------------------------------|----------------------------------------|
| OUTLINE                           | Rainfall detection function09-19-4     |
| AUTO WIPER SYSTEM OUTLINE 09-19-1 | Sensitivity Adjustment Function09-19-4 |
| AUTO WIPER SYSTEM STRUCTURAL      | Initial Setting Function09-19-4        |
| VIEW                              | On-board Diagnostic Function09-19-4    |
| AUTO WIPER SYSTEM WIRING          | Fail-Safe Function                     |
| DIAGRAM 09-19-2                   | RAIN SENSOR                            |
| AUTO WIPER SYSTEM                 | CONSTRUCTION/OPERATION 09-19-4         |
| OPERATION                         | Operation With No Rainfall             |
| Intermittent Operation 09-19-3    | Contacting Windshield09-19-5           |
| ·                                 | Operation With Rainfall Contacting     |
|                                   | Windshield                             |
|                                   |                                        |

#### **WIPER/WASHER SYSTEM OUTLINE**

id091900102500

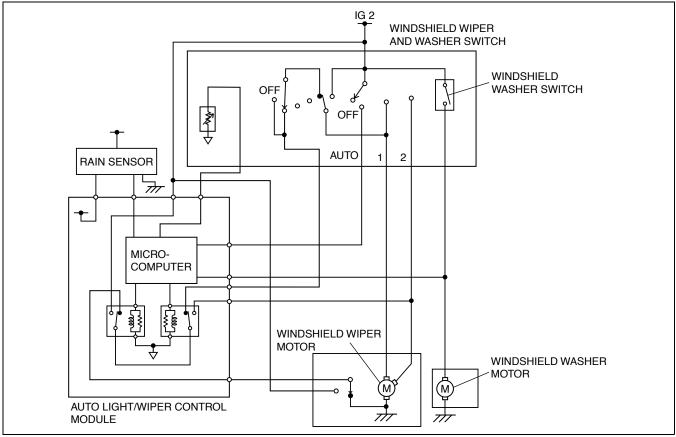
• Auto wiper system adopted which enables fully automatic windshield wiper operation.


#### **AUTO WIPER SYSTEM OUTLINE**

id091900101000

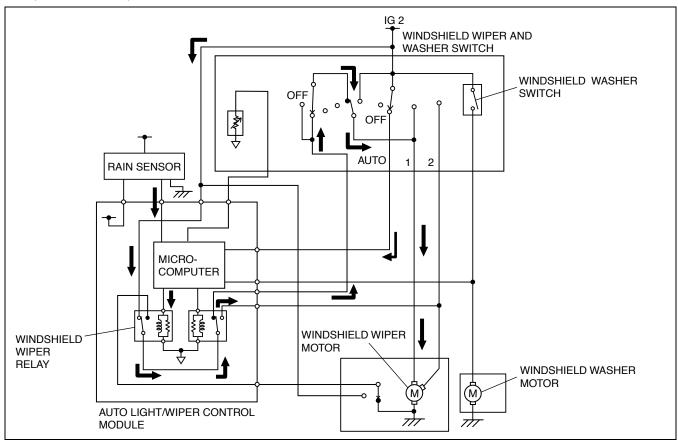
• An auto wiper system that detects rainfall on the windshield and automatically controls all operation (stop, interval, low, and high) has been adopted, removing the burden of operating switches from the driver.

## **AUTO WIPER SYSTEM STRUCTURAL VIEW**


id091900101100



ar8uun00000241


#### **AUTO WIPER SYSTEM WIRING DIAGRAM**

id091900101200



id091900101300

- 1. The rain sensor installed in the windshield detects rainfall amount when the wiper and washer switch is turned to the AUTO position.
- 2. The detected rainfall amount is converted to an electronic signal and transmitted to the auto light/wiper control module as a windshield wiper operation control signal.
- 3. When the microcomputer in the auto light/wiper control module receives the control signal, current (1) flows to the transistor and the transistor is turned on.
- 4. When the transistor turns on, the windshield wiper relay turns on.
- 5. When the windshield wiper relay turns on, the current flows to the windshield wiper motor, and the wiper operates at low speed.



ar8uun00000368

# **Intermittent Operation**

• If the windshield wipers are stopped and the rain sensor detects a specified amount of rainfall, the wipers are operated at low speed. The interval timing is adjusted according to the amount of rainfall detected.

## **Low Speed Operation**

• If the windshield wipers are operating intermittently and the rain sensor detects an amount of rainfall specifc to wiper operation greater than low speed, but less than high speed, the wipers are operated continuously at low speed.

#### **High Speed Operation**

• If the windshield wipers are operating at low speed or stopped and the rain sensor detects an amount of rainfall specific to high speed operation or greater, the wipers are operated two times at high speed. If the rain sensor receives a signal for high speed operation after the wipers are operated at high speed twice, the high speed operation is continued.

#### WIPER/WASHER SYSTEM

#### **RAIN SENSOR FUNCTION**

id091900101400

#### Rainfall detection function

• The LED in the rain sensor emits infrared light which is reflected off the windshield via the lens sensor and then received by the photodiode in the rain sensor. If the rate of reflected infrared light is reduced, it is determined that rain is contacting the windshield and the intensity of the rainfall is calculated from the amount of reflection rate reduction.

# **Sensitivity Adjustment Function**

 By changing the sensitivity adjustment volume, installed on the wiper and washer switch, the sensitivity of the rain sensor can be freely adjusted.

#### **Initial Setting Function**

- When the ignition switch is turned to the ON position after replacing the rain sensor with a new one, the initial setting is stored after verifying the windshield condition.
- The initial setting of the rain sensor can be performed using the specified procedure.
  - Refer to the Workshop Manual for the initial setting procedure.

#### **On-board Diagnostic Function**

- If there is any malfunction in the rain sensor, the rain sensor notifies the auto light/wiper control module of the malfunction and a DTC from the auto light/wiper control module is detected.
- If there is a communication error between the rain sensor and auto light/wiper control module, the rain sensor notifies the auto light/wiper control module of the error and a DTC from the auto light/wiper control module is detected.

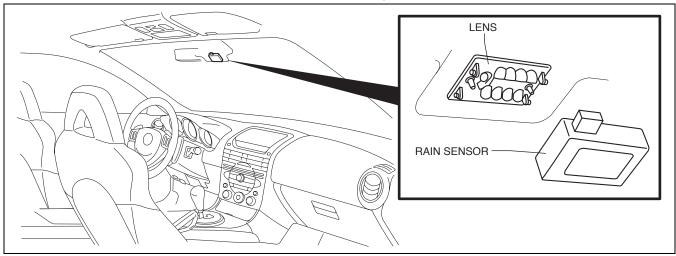
#### **Fail-Safe Function**

- If the rain sensor detects rainfall and then detects no change in the detected amount after the wipers have been operated two times, the windshield is determined to be dirty and windshield wiper operation is stopped.
  - If the windshield is dirty, turn the wiper and washer switch to the 1 or 2 position to operate the windshield wipers. Or, remove dirt from the windshield before operating the auto wiper.
- When the temperature sensor inside the rain sensor detects approx. -10 °C {50 °F}or less when the vehicle speed is 0 km/h, the windshield wipers do not operate.

#### **RAIN SENSOR CONSTRUCTION/OPERATION**

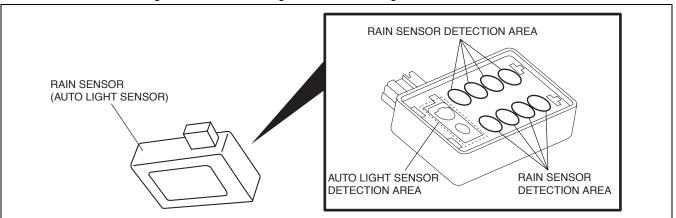
id091900101500

#### Warning


If vehicle servicing such as car washing is performed with the ignition switch turned to the ON
position, and the wiper and washer switch is in the AUTO position, the windshield wipers may
operate automatically. Always turn the ignition switch, and the wiper and washer switch off before
performing servicing such as the car washing; otherwise a pinched hand or fingers could result in
injury or a wiper system malfunction.

#### Caution

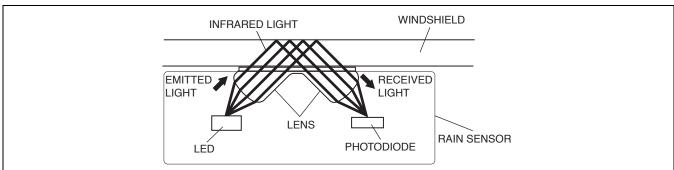
- In the following cases, the rain sensor cannot detect the rainfall amount correctly which could cause a windshield wiper malfunction:
  - A sticker or label is adhered to the windshield above the rain sensor.
  - The windshield is dirty above the rain sensor.


### WIPER/WASHER SYSTEM

The rain sensor is installed to the lens which is installed to top center area of the windshield.



ar8uun00000242

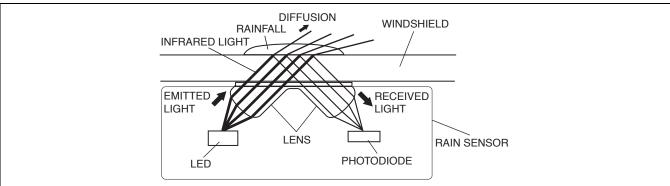

• The rain sensor is integrated with the auto-ight sensor as a single unit.



am8rrn00000599

#### **Operation With No Rainfall Contacting Windshield**

- 1. Infrared light is emitted from the LED in the rain sensor towards the windshield.
- 2. The emitted infrared light passes through the lens and is reflected off the windshield.
- 3. The infrared light reflected off the windshield is received by the photodiode in the lens.
- 4. The photodiode receives the light, the microcomputer in the rain sensor calculates the rainfall amount from the reflection rate, converts this to an electric signal and sends a windshield wiper control signal to the auto light/wiper control module.




am8rrn00000597

#### WIPER/WASHER SYSTEM

# **Operation With Rainfall Contacting Windshield**

- 1. Infrared light is emitted from the LED in the rain sensor towards the windshield.
- 2. Emitted infrared light passing through the lens is received by the windshield and diffused by the rainfall contacting the windshield.
- 3. The infrared light that is not diffused is reflected by the windshield and received by the photodiode in the lens.
- 4. The photodiode receives the light, the microcomputer in the rain sensor calculates the rainfall amount from the reflection rate, converts this to an electric signal and sends a windshield wiper control signal to the auto light/wiper control module.



am8rrn00000598

# 09-20

# 09-20 ENTERTAINMENT

| ENTERTAINMENT OUTLINE 09-20-1       | ANTENNA CONSTRUCTION           | 09-20-23                                 |
|-------------------------------------|--------------------------------|------------------------------------------|
| AUDIO SYSTEM OUTLINE 09-20-2        | SIRIUS Satellite Radio Antenna | 09-20-23                                 |
| AUDIO SYSTEM SPECIFICATIONS 09-20-2 | Glass Antenna (for FM/AM)      | 09-20-23                                 |
| Audio Unit                          | AUDIO CONTROL SWITCH           |                                          |
| AUDIO SYSTEM STRUCTURAL             | OUTLINE                        | 09-20-23                                 |
| VIEW                                | AUDIO CONTROL SWITCH           |                                          |
| AUDIO SYSTEM BLOCK DIAGRAM 09-20-4  | CONSTRUCTION/OPERATION         | 09-20-24                                 |
| CENTER PANEL UNIT OUTLINE 09-20-4   | Construction                   |                                          |
| CENTER PANEL UNIT CONSTRUCTION/     | Operation                      |                                          |
| OPERATION 09-20-5                   | CAR-NAVIGATION SYSTEM          |                                          |
| With Audio System 09-20-5           | OUTLINE                        | 09-20-25                                 |
| With Car-navigation System 09-20-6  | CAR-NAVIGATION SYSTEM          |                                          |
| AUDIO UNIT OUTLINE 09-20-7          | SPECIFICATIONS                 | 09-20-25                                 |
| AUDIO UNIT CONSTRUCTION 09-20-7     | Car-navigation Unit            |                                          |
| Structural view                     | CAR-NAVIGATION SYSTEM          |                                          |
| Terminal Layout and Signal 09-20-8  | STRUCTURAL VIEW                | 09-20-25                                 |
| AUTO LEVEL CONTROL (ALC)            | CAR-NAVIGATION SYSTEM          |                                          |
| FUNCTION 09-20-9                    | BLOCK DIAGRAM                  | 09-20-26                                 |
| AUTO LEVEL CONTROL (ALC)            | NAVIGATION FUNCTION            |                                          |
| OPERATION                           | Outline                        |                                          |
| With Audio Unit                     | Map Screen Selection           |                                          |
| With Car-navigation Unit            | Destination Setting Function   |                                          |
| ON-BOARD DIAGNOSTIC SYSTEM          | Voice Recognition Function     |                                          |
| FUNCTION [AUDIO SYSTEM] 09-20-11    | CAR-NAVIGATION UNIT OUTLINE    |                                          |
| Self-diagnostic Function 09-20–11   | CAR-NAVIGATION UNIT            | 03 20 00                                 |
| Diagnostic Assist Function 09-20-12 | CONSTRUCTION                   | 09-20-30                                 |
| ON-BOARD DIAGNOSTIC SYSTEM          | Structural view                |                                          |
| FUNCTION [HANDS-FREE                | Terminal Layout and Signal     |                                          |
| TELEPHONE (HF/TEL) SYSTEM] 09-20-14 | MICROPHONE CONSTRUCTION/       | 05-20 01                                 |
| Self-diagnostic Function 09-20-14   | OPERATION                      | 09-20-32                                 |
| Diagnostic Assist Function 09-20-16 | Terminal Layout and Signals    |                                          |
| ON-BOARD DIAGNOSTIC SYSTEM          | AUXILIARY JACK FUNCTION        |                                          |
| FUNCTION                            | AUXILIARY JACK CONSTRUCTION/   |                                          |
| [CAR-NAVIGATION SYSTEM] 09-20-17    | OPERATION                      |                                          |
| Self-diagnostic Function 09-20-17   | HANDS-FREE TELEPHONE (HF/TEL   |                                          |
| Diagnostic Assist Function 09-20–17 | SYSTEM OUTLINE                 | - <i>)</i><br>                           |
| Diagnostic check                    | HANDS-FREE TELEPHONE (HF/TEL   |                                          |
| AUDIO AMPLIFIER                     | SYSTEM STRUCTURAL VIEW         |                                          |
| CONSTRUCTION 09-20-20               | Component part and Function    |                                          |
| Structural view                     | HANDS-FREE TELEPHONE (HF/TEL   |                                          |
| Terminal Layout and Signal 09-20–20 | SYSTEM BLOCK DIAGRAM           |                                          |
| SIRIUS SATELLITE RADIO UNIT         | HANDS-FREE TELEPHONE (HF/TEL   |                                          |
| CONSTRUCTION 09-20-22               | SYSTEM CONSTRUCTION            |                                          |
| Structural view                     | Structural view                |                                          |
| Terminal Layout and Signal 09-20–22 | Terminal Layout and Signal     | U3-2U-33<br>00_20 25                     |
| Terrimiai Layout and Signal         | HANDS-FREE TELEPHONE (HF/TEL   | <del>05-</del> 20 <del>-</del> 35<br>  \ |
|                                     | SYSTEM FUNCTION                |                                          |
|                                     | JIJIEW FUNCTION                | 05-20-30                                 |

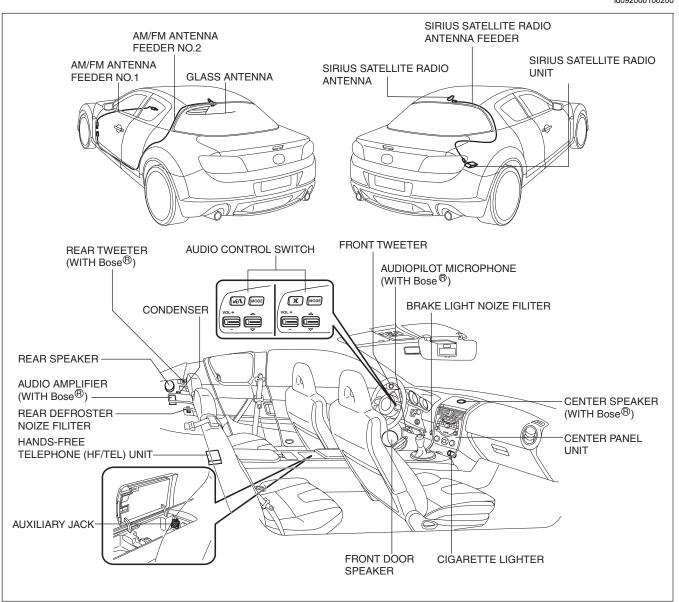
# **ENTERTAINMENT OUTLINE**

id092000100100

| Improved marketability | <ul> <li>A unit with a built-in AM/FM tuner and CD player or CD changer or MP3 applicable CD changer unit has been adopted for the audio unit.</li> <li>A unit with a built-in DVD-ROM drive and MP3 applicable CD changer has been adopted for the car navigation unit.</li> <li>An HF/TEL system in which mobile telephones can be used while driving has been adopted. (With HF/TEL system)</li> <li>A SIRIUS satellite radio antenna which can receive SIRIUS satellite radio has been adopted. (With SIRIUS satellite radio system)</li> </ul> |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Improved convenience   | <ul> <li>Audio control switches have been adopted to the left spoke of the steering wheel.</li> <li>Auxiliary jack adopted which can connect to commercially available portable audio, and output sound from speakers via audio unit.</li> </ul>                                                                                                                                                                                                                                                                                                    |

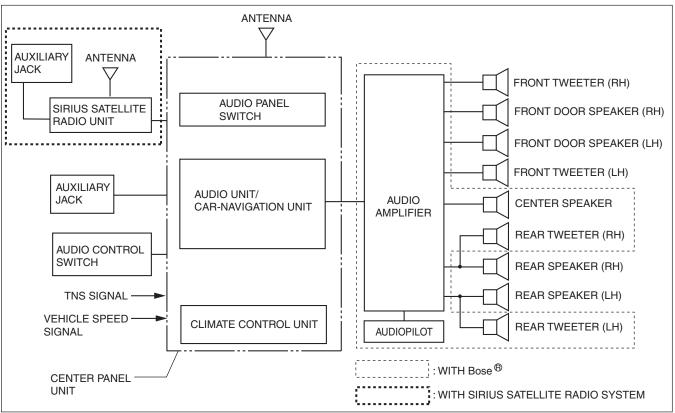
#### **AUDIO SYSTEM OUTLINE**

id092000111000


- Three types of audio units, TYPE A (AM/FM tuner/CD player-integrated) and TYPE B (AM/FM tuner/CD changer-integrated) and TYPE C (AM/FM tuner/MP3 applicable CD changer-integrated), are provided.
- Steering switches on the left spoke of the steering wheel have been adopted.
- An HF/TEL system in which mobile telephones can be used while driving has been adopted. (With HF/TEL system)
- A SIRIUS satellite radio antenna which can receive SIRIUS satellite radio has been adopted. (With SIRIUS satellite radio system)
- Auxiliary jack adopted which can connect to commercially available portable audio, and output sound from speakers via audio unit.

#### **AUDIO SYSTEM SPECIFICATIONS**

id092000100400


#### **Audio Unit**

| Item                     |    |       | Specification                                                                                 |
|--------------------------|----|-------|-----------------------------------------------------------------------------------------------|
| Rated voltage            |    | (V)   | 12                                                                                            |
| Eroguopov rango          | AM | (kHz) | 530—1710                                                                                      |
| Frequency range          | FM | (MHz) | 87.75—107.90                                                                                  |
| Maximum output power (W) |    | (W)   | With Bose <sup>®</sup> : 296 (External type audio amplifier) Without Bose <sup>®</sup> : 25×4 |
| Output impedance (ohm)   |    | (ohm) | 4                                                                                             |



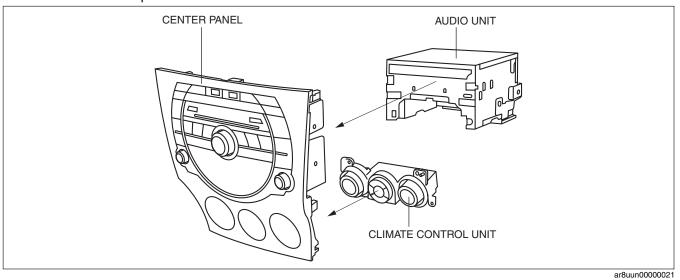
#### **AUDIO SYSTEM BLOCK DIAGRAM**

id092000100300

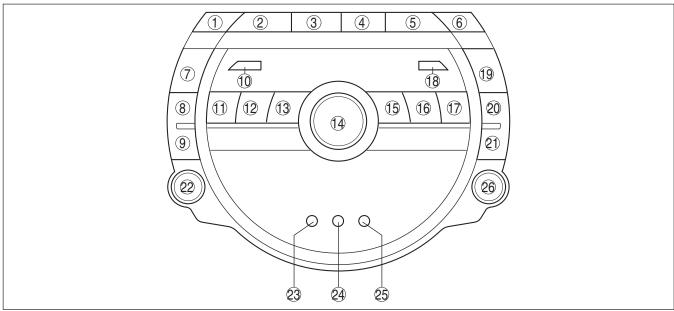


ar8uun00000317

#### **CENTER PANEL UNIT OUTLINE**


id092000101400

- The center panel unit, which integrates the audio unit and climate control unit and audio switches on the center panel, has been adopted to realize a design with a sense of unity. (with audio system)
- The center panel unit, which integrates the car-navigation unit and climate control unit and LCD on the center panel, has been adopted to realize a design with a sense of unity. (with car-navigation system)


#### id092000195500

# With Audio System Constitution

• A center panel unit has been adopted with the audio unit and climate control unit installed, and audio switch built into the center panel.

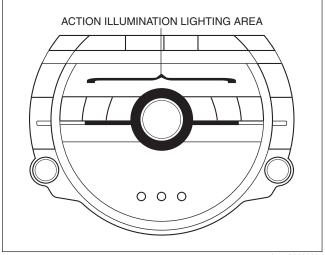


#### Position of switches



ar8uun00000306

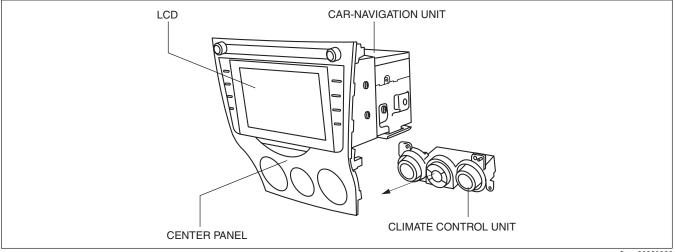
| 1  | INSTANT REPLAY switch           |
|----|---------------------------------|
| 2  | FM/AM switch                    |
| 3  | CD switch                       |
| 4  | SAT switch                      |
| 5  | MEDIA switch                    |
| 6  | Outside temperature switch      |
| 7  | SCAN switch                     |
| 8  | SEEK/TRACK switch (up)          |
| 9  | SEEK/TRACK/REPLAY switch (down) |
| 10 | LOAD switch                     |


| 11 | RPT/PRESET switch 1     |
|----|-------------------------|
| 12 | RDM/PRESET switch 2     |
| 13 | PRESET switch 3         |
| 14 | POWER/VOLUME switch     |
| 15 | PRESET switch 4         |
| 16 | PRESET switch 5         |
| 17 | PRESET switch 6         |
| 18 | EJECT switch            |
| 19 | AUTO-M switch           |
| 20 | DISC/FOLDER switch (up) |

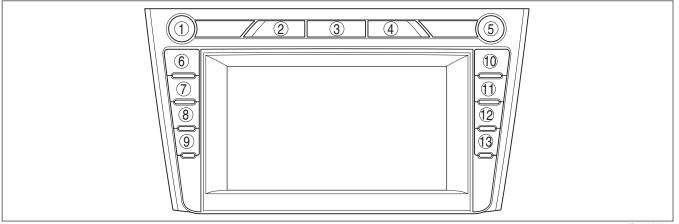
| 21 | DISC/FOLDER/<br>CATEGORY switch<br>(down) |
|----|-------------------------------------------|
| 22 | TUNE/DISP/ESN switch                      |
| 23 | H switch (clock)                          |

| 24 | M switch (clock)       |
|----|------------------------|
| 25 | 00 switch (clock)      |
| 26 | AUDIO CONT/TEXT switch |

#### **Action illumination**


- The action illumination is linked to the audio switch operation during TNS ON to turn the audio panel illumination on and off.
- The target operations of the action illumination are as follows:
  - Volume adjustment
  - Audio power supply ON/OFF
  - Audio mode changing
  - SEEK up/down
  - Track up/down
  - Programming radio stations using the preset switch
  - Searching for radio stations using the SCAN switch
  - Entering SIRIUS satellite radio mode using the SAT switch/INSTANT REPLAY switch
  - Searching for radio stations using the SEEK/ TRACK switch while in the SIRIUS satellite radio mode




ar8uun00000024

# With Car-navigation System Constitution

 A center panel unit has been adopted with the car-navigation unit and climate control unit installed, and LCD built into the center panel.



#### Position of switches



ar8jjn00000297

| 1 | POWER/VOLUME        |  |
|---|---------------------|--|
|   | switch              |  |
| 2 | SCAN switch         |  |
| 3 | Outside temperature |  |
|   | switch              |  |
| 4 | DISP switch         |  |
| 5 | TUNE/AUDIO switch   |  |
| 6 | LOAD switch         |  |

| 7  | SOURCE switch      |  |
|----|--------------------|--|
| 8  | SEEK switch (up)   |  |
| 9  | SEEK switch (down) |  |
| 10 | MAP switch         |  |
| 11 | RETURN switch      |  |
| 12 | MENU switch        |  |
| 13 | VOICE switch       |  |

**AUDIO UNIT OUTLINE** 

- Three types of audio units, TYPE A (AM/FM tuner/CD player-integrated) and TYPE B (AM/FM tuner/CD changer-integrated) and TYPE C (AM/FM tuner/MP3 applicable CD changer-integrated), are provided.
- A self-diagnostic function has been adopted.
- A diagnostic assist function has been adopted.

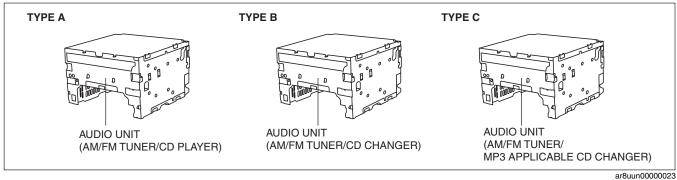
#### **AUDIO UNIT CONSTRUCTION**

id092000108900

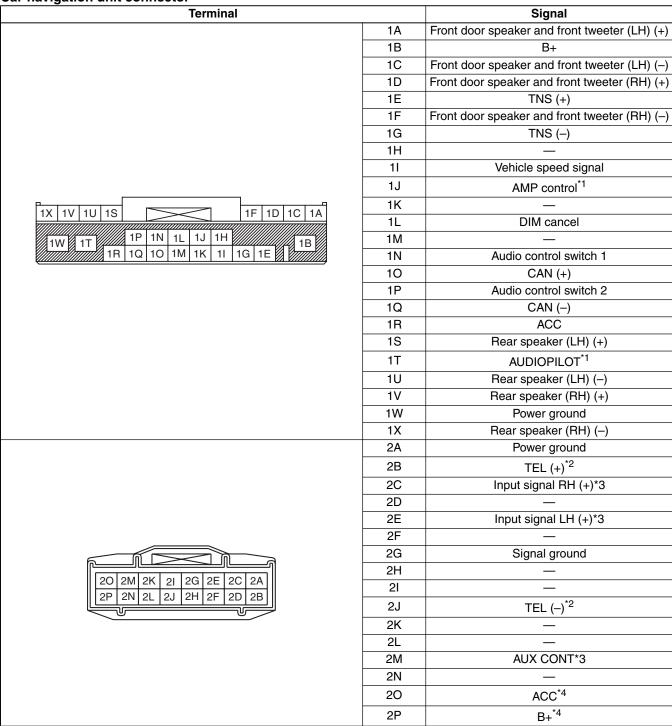
#### Structural view

#### TYPE A

• Integrated with AM/FM tuner/CD player.


#### TYPE B

• Integrated with AM/FM tuner/CD changer.


#### TYPE C

• Integrated with AM/FM tuner/MP3 applicable CD changer.

#### Structural view



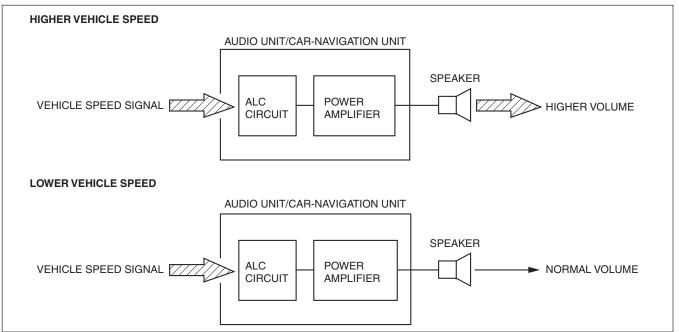
Terminal Layout and Signal Car-navigation unit connector



\*1: With Bose®

\*2 : With H/F TEL system

\*3 : Without SIRIUS satellite radio system\*4 : With SIRIUS satellite radio system

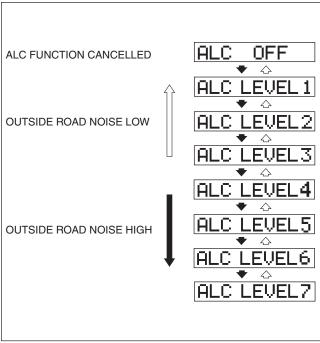

id092000106900

• Adjusts the audio volume so that the sound is balanced against wind and road noise while driving.

# **AUTO LEVEL CONTROL (ALC) OPERATION**

id092000106800

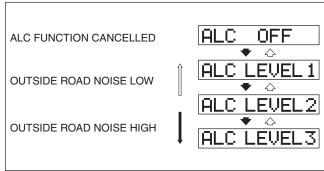
• The audio unit changes the volume automatically based on the vehicle speed signal sent from the instrument cluster.




ar8uun00000027

09-20

#### With Audio Unit


The ALC function is divided into eight modes that can be used effectively to match the driving conditions.



am6zzn0000067

# With Car-navigation Unit

The ALC function is divided into four modes that can be used effectively to match the driving conditions.



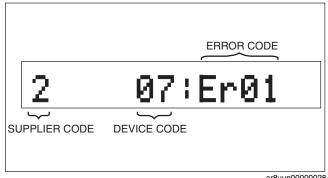
• The on-board diagnostic system has a self-diagnostic function and diagnostic assist function to help technicians locate malfunctions.

## Self-diagnostic Function **Malfunction detection function**

• The malfunction detection function detects malfunctions occurring in the audio system.

# **Memory function**

- The memory function detects a malfunction, changes it to a DTC, and stores it in the memory. The memory can store a maximum of three DTCs. If another malfunction is detected when three DTCs are already stored, the memory function clears the oldest DTC and stores the new one.
- Once a DTC is stored, it can only be cleared by the designated procedure; not by turning the ignition switch to the LOCK position or disconnecting the negative battery cable. The procedure is mentioned in the Workshop Manual.


### **Display function**

- When the self-diagnostic function is activated, the information display displays the DTC stored in the memory.
- The DTC consists of the following codes:
  - Supplier code (indicates manufacturer)
  - Device code (indicates malfunctioning part)
  - Error code (indicates malfunction description)
- Refer to the Workshop Manual for the display method.

| Supplier code | Supplier name   |  |
|---------------|-----------------|--|
| 01            | SANYO Automedia |  |
| 02            | Panasonic       |  |
| 03            | Clarion         |  |
| 04            | Pioneer         |  |
| 05            | VISTEON         |  |

| Device code | Parts name                    |  |
|-------------|-------------------------------|--|
| 03          | CD player                     |  |
| 06          | CD changer                    |  |
| 09          | Audio unit                    |  |
| 11          | SIRIUS satellite radio system |  |
| 16          | CAN system                    |  |
| 21          | Center panel (audio panel)    |  |
| 22          | MP3 applicable CD changer     |  |

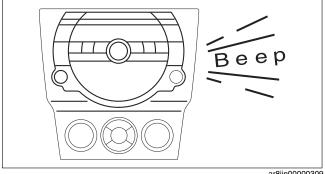
| Error code | Malfunction description             |  |  |
|------------|-------------------------------------|--|--|
| 01         | Internal mechanism error            |  |  |
| 02         | Servo mechanism error               |  |  |
| 03         | Mechanism stuck                     |  |  |
| 07         | Disc reading error                  |  |  |
| 10         | BUS line (communication line) error |  |  |
| 12         | CAN line (communication line) error |  |  |
| 19         | Communication line                  |  |  |
| 20         | Insufficient power supply           |  |  |
| 21         | Amplifier related circuit           |  |  |
| 22         | Tuner error                         |  |  |



ar8uun00000028

09-20

09-20-11


| Screen display |               | Malfunction location                                   |
|----------------|---------------|--------------------------------------------------------|
| DTC            | Output signal | Malfunction location                                   |
| 03: Er01       | _             | CD player system                                       |
| 03: Er02       | CHECK CD      | CD player system                                       |
| 03: Er07       | CHECK CD      | CD player system                                       |
| 03: Er10       | _             | CD player communication circuit system                 |
| 06: Er01       | CHECK CD      | MP3 applicable CD changer system                       |
| 06: Er02       | CHECK CD      | MP3 applicable CD changer system                       |
| 06: Er07       | CHECK CD      | MP3 applicable CD changer system                       |
| 06: Er10       | _             | CD changer communication circuit system                |
| 09: Er20       | _             | Power supply circuit to audio unit                     |
| 09: Er21       | _             | audio unit (peripheral circuit for power amplifier)    |
| 09: Er22       | _             | audio unit (peripheral circuit for tuner)              |
| 11: Er01       | _             | SIRIUS satellite radio system                          |
| 11: Er03       | _             | SIRIUS satellite radio system                          |
| 16: Er12       | _             | CAN system communication error                         |
| 21: Er19       | _             | Center panel (audio panel) system                      |
| 22: Er01       | _             | MP3 applicable CD changer system                       |
| 22: Er02       | CHECK CD      | MP3 applicable CD changer system                       |
| 22: Er07       | CHECK CD      | MP3 applicable CD changer system                       |
| 22: Er10       | _             | MP3 applicable CD changer communication circuit system |
| no Err         | _             | No DTCs stored                                         |

# **Diagnostic Assist Function**

- The diagnostic assist function displays the operating condition of the following functions (components) and forces them to operate in order to examine whether they are malfunctioning or not.
- For the start procedure of each mode, refer to the Workshop Manual.

#### **Switch inspection**

· Activates a buzzer sound when a switch is operated and examines each of the switches.



ar8jjn00000309

### Speaker inspection

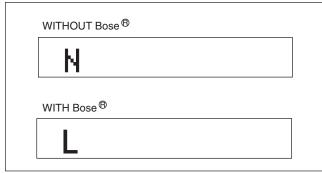
• Verifies that the speakers output sound in the following order and examines the speakers and wiring harness between the audio unit and speaker.

# Without Bose®

- Front door speaker (LH) and front tweeter (LH)
- Front door speaker (RH) and front tweeter (RH))
- Rear speaker (RH)
- Rear speaker (LH)

# With Bose®

- Front door speaker (LH) and front tweeter (LH)
- Center speaker
- Front door speaker (RH) and front tweeter (RH)
- Rear speaker (RH) and rear tweeter (RH)
- Rear speaker (LH) and rear tweeter (LH)


# Radio reception condition inspection

 The diagnostic assist function displays the radio reception condition in 11 levels (0-10) to assist in determining the condition of the antenna, antenna feeders, and audio unit (tuner).



## Audio amplifier specification inspection

• Displays the audio amplifier specification on the LCD screen to verify its specification.



ar8uun00000029

# Audio amplifier (with Bose®) identify inspection

- Inspection of the audio amplifier can be performed by operating the following speakers.
  - With standard seat
  - Front door speaker

#### With leaser seat

Rear speaker

# **SIRIUS Satellite Radio Software Version Verification**

• Displays the SIRIUS satellite radio software version on the information display.



### ON-BOARD DIAGNOSTIC SYSTEM FUNCTION [HANDS-FREE TELEPHONE (HF/TEL) SYSTEM]

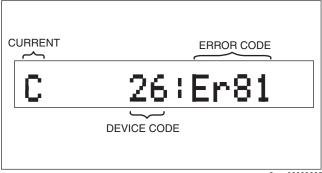
id0920001018a8

• The on-board diagnostic system has a self-diagnostic function and diagnostic assist function to help technicians locate malfunctions.

### **Self-diagnostic Function**

### **Malfunction detection function**

• The malfunction detection function detects malfunctions occurring in the HF/TEL system.


### **Memory function**

• The memory function converts a malfunction detected by the malfunction detection function to a DTC and stores it. The error currently occurring is stored as a present malfunction. Up to three DTCs (with audio unit), or six (with car-navigation unit) can be stored as a present malfunction. The error that has previously occurred is stored as a past malfunction. Up to three DTCs (with audio unit), or six (with car-navigation unit) can be stored as a past malfunction. The DTCs, together with the number of times the ignition switch has been turned off after the occurrence of an error (maximum of 255 times), are stored as a past malfunction.

### Display function

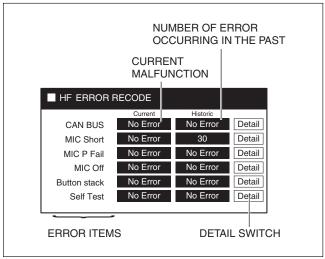
### With audio unit

- When the self-diagnostic function is activated, the information displays the DTC stored in the memory.
- The DTC consists of the following codes and numbers:
  - Malfunction type
  - Number of times the ignition switch has been turned off after the occurrence of an error
  - Device code
  - Error code
- Refer to the Workshop Manual for the display method.



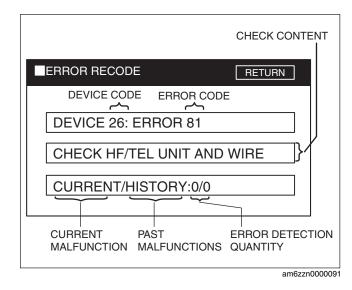
ar8uun00000025

#### With car-navigation unit


- When the self-diagnostic function is activated, the displays the DTC stored in the memory.
- The DTC consists of the following codes and numbers:

### Error history display screen

- Error items
- Current malfunction
- Number of times the ignition switch has been turned off after the occurrence of an error
- Detail Switch


### **Detail display screen**

- Device code
- Error code
- Check content
- Number of times present/past malfunction has occurred
- Refer to the Workshop Manual for the display method.



am6zzn0000091

### Detail display screen



### **DTC** table

|                     | Scre        | en display  |                                                                                                                                                                                                                                   |
|---------------------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Car-navigation unit |             | Audio unit  | Inferred cause/verified content                                                                                                                                                                                                   |
| Device code         | Error code  | Addio dilit |                                                                                                                                                                                                                                   |
|                     | 81          | 26: Er81    | CAN system                                                                                                                                                                                                                        |
|                     | 82          | 26: Er82    | Short to power supply in wiring harness between microphone (Input signal) and HF/TEL unit                                                                                                                                         |
|                     | 83          | 26: Er83    | Short to GND/power supply in microphone power supply circuit                                                                                                                                                                      |
| 26                  | 84          | 26: Er84    | <ul> <li>Any of the following is detected:</li> <li>The microphone power supply circuit is not connected.</li> <li>Open circuit in the microphone input circuit</li> <li>Microphone input circuit short to body ground</li> </ul> |
|                     | 85 26: Er85 |             | Poor contact in the hands-free telephone switch or hands-free telephone unit (HF/TEL unit) connector     Voice recognition/hands-free switch malfunction                                                                          |
|                     | 86          | 26: Er86    | HF/TEL unit malfunction                                                                                                                                                                                                           |
| No Error            |             | no Err      | DTC is not recorded.                                                                                                                                                                                                              |

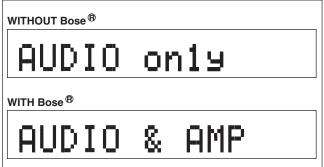
09-20

### **Diagnostic Assist Function**

### With audio unit

- The diagnostic assist function displays the operating condition of the following functions (components) and forces them to operate in order to examine whether they are malfunctioning or not.
- For the start procedure of each mode, refer to the Workshop Manual.

#### Software version verification


• Displays the software version on the information display.



am5ezw0000197

### **Connection condition verification**

• Displays the connection status on the information display and examines the HF/TEL system-related unit, wiring harness, and connector.



ar8uun00000026

### **Password reset**

· Operate the switch and reset the password.



### With car-navigation unit

- Input a diagnostic assist code and display the unit's operation conditions, or force the operation to examine the integrity of functions (parts).
- For start-up methods of each mode, refer to the Workshop Manual.

### Diagnostic assist code table

| =g  |                                   |  |
|-----|-----------------------------------|--|
| No. | Content/function                  |  |
| 37  | Connection condition verification |  |
| 38  | Software version verification     |  |
| 39  | Password reset                    |  |

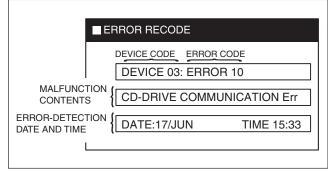
id0920001018b2

 The on-board diagnostic system has a self-diagnostic function and diagnostic assist function to help technicians locate malfunctions.

## Self-diagnostic Function Malfunction detection function

The malfunction detection function detects malfunctions occurring in the car-navigation system.

### **Memory function**


- The memory function detects a malfunction, changes it to a DTC, and stores it in the memory. The memory can store a maximum of twenty DTCs. If another malfunction is detected when twenty DTCs are already stored, the memory function clears the oldest DTC and stores the new one.
- Once a DTC is stored, it can only be cleared by the designated procedure; not by turning the ignition switch to the LOCK position or disconnecting the negative battery cable. The procedure is mentioned in the Workshop Manual.

### **Display function**

- When the self-diagnostic function is activated, the information display displays the DTC stored in the memory.
- The DTC consists of the following codes:
  - Device code
  - Error code
  - Malfunction contents
  - Error-detection date and time
- Refer to the Workshop Manual for the display method.

| Device code | Parts name                |  |
|-------------|---------------------------|--|
| 09          | Car-navigation unit       |  |
| 16          | CAN system                |  |
| 17          | CAN communication line    |  |
| 21          | Switch panel              |  |
| 22          | MP3 applicable CD changer |  |
| 25          | Navigation                |  |

| Error code Malfunction description |                                                |  |
|------------------------------------|------------------------------------------------|--|
| 01                                 | Internal mechanism error                       |  |
| 02                                 | Servo mechanism error                          |  |
| 07                                 | Disc reading error                             |  |
| 10                                 | BUS line (communication line) error            |  |
| 11                                 | CAN line (communication line) error            |  |
| 12                                 | CAN line (communication line) error            |  |
| 19                                 | Panel mecha error                              |  |
| 20                                 | Insufficient power supply                      |  |
| 21                                 | Amplifier related circuit                      |  |
| 22                                 | Tuner error                                    |  |
| 23                                 | Abnormally high temperature and excess-voltage |  |
| 24                                 | Amplifier output error                         |  |
| 32                                 | TAB2 communication error                       |  |

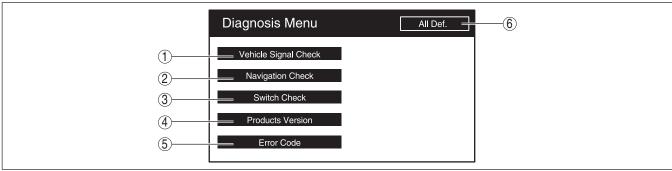


ar8uun00000007

09-20

| Screen display |               |                                           |                                           |  |
|----------------|---------------|-------------------------------------------|-------------------------------------------|--|
| Device code    | Error<br>code | Output signal                             | Malfunction location                      |  |
|                | 20            | CHECK BATTERY                             | Car-navigation unit                       |  |
|                | 21            | CHECK SPEAKER AND WIRE                    | Car-navigation unit                       |  |
| 09             | 22            | TUNER MALFUNCTION                         | Car-navigation unit                       |  |
|                | 23            | _                                         | Car-navigation unit                       |  |
|                | 24            | CHECK SPEAKER AND WIRE                    | Car-navigation unit                       |  |
| 16             | 12            | CHECK VEHICLE WIRE                        | CAN system communication error            |  |
| 17             | 11            | _                                         | Communication error to instrument cluster |  |
| 21             | 19            | CHECK PANEL Switch panel system CONNECTOR |                                           |  |
|                | 01            | CD-DRIVE<br>MALFUNCTION                   | MP3 applicable CD changer system          |  |
| 22             | 02            | CD-DRIVE<br>MALFUNCTION                   | MP3 applicable CD changer system          |  |
| 22             | 07            | CHECK CD-DRIVE AND DISC                   | MP3 applicable CD changer system          |  |
|                | 10            | CD-DRIVE<br>COMUNICATION Err              | MP3 applicable CD changer system          |  |
| 25             | 32            | TAB2 Err                                  | Car-navigation unit                       |  |
| No Error       |               | _                                         | _                                         |  |

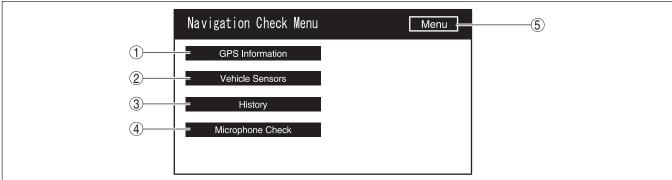
### **Diagnostic Assist Function**


- Input a diagnostic assist code and display the unit's operation conditions, or force the operation to examine the integrity of functions (parts).
   For start-up methods of each mode, refer to the Workshop Manual.
   Diagnostic assist code table

| No. | Content/function                            |  |  |
|-----|---------------------------------------------|--|--|
| 01  | Display inspection                          |  |  |
| 02  | Switch inspection                           |  |  |
| 03  | Speaker inspection                          |  |  |
| 04  | Radio reception condition inspection        |  |  |
| 05  | Antenna control output condition inspection |  |  |
| 06  | Supplier identification                     |  |  |
| 07  | Audio amplifier specification inspection    |  |  |
| 08  | Display open/close inspection               |  |  |
| 09  | Radio SEEK inspection                       |  |  |
| 10  | Software version verification               |  |  |
| 11  | DVD/CD drive inspection                     |  |  |

### Diagnostic check

• The following inspections can be performed by launching the diagnostic mode.


### Inspection item list

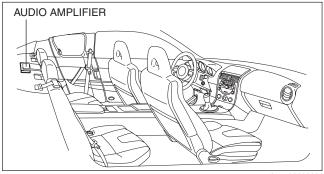


am6zzn0000095

| No. | Name                 | Content/function                                                                    |
|-----|----------------------|-------------------------------------------------------------------------------------|
| 1   | Vehicle Signal Check | Perform the vehicle signal check.                                                   |
| 2   | Navigation Check     | Go to the Navigation Check Menu.                                                    |
| 3   | Switch Check         | Perform the panel switch inspection.                                                |
| 4   | Products Version     | Verify the products version.                                                        |
| 5   | Error Code           | Caution     This item does not operate because it is a manufacturer exclusive item. |
| 6   | All Def.             | Caution     This item does not operate because it is a manufacturer exclusive item. |

### Navigation check Inspection item list




| No. | Name             | Content/function                 |
|-----|------------------|----------------------------------|
| 1   | GPS Information  | Display the GPS information.     |
| 2   | Vehicle Sensors  | splay the vehicle sensors.       |
| 3   | History          | Display the history.             |
| 4   | Microphone Check | Verify the microphone condition. |
| 5   | Menu             | Return to the Diagnosis Menu.    |

### **AUDIO AMPLIFIER CONSTRUCTION**

id092000819300

### Structural view

- The audio amplifier are located inside the rear package center trim.
  Converts music signals (analog voltage waveform) from the audio unit to digital signals, then amplifies and outputs them.



ar8uun00000009

### **Terminal Layout and Signal**

| Terminal              |    | Signal                                             |
|-----------------------|----|----------------------------------------------------|
|                       | 1A | B+                                                 |
|                       | 1B | Power ground                                       |
|                       | 1C | Rear speaker (LH) and rear tweeter (LH) output (-) |
| 1G 1E 1C 1A           | 1D | Rear speaker (LH) and rear tweeter (LH) output (+) |
| 1H 1F 1D 1B           | 1E | Rear speaker (RH) and rear tweeter (RH) output (-) |
|                       | 1F | Rear speaker (RH) and rear tweeter (RH) output (+) |
|                       | 1G | Center speaker output (-)                          |
|                       | 1H | Center speaker output (+)                          |
|                       | 2A | _                                                  |
|                       | 2B | Front door speaker (LH) output (-)                 |
|                       | 2C | _                                                  |
|                       | 2D | Front door speaker (LH) output (+)                 |
|                       | 2E | Front tweeter (RH) (+)                             |
|                       | 2F | _                                                  |
|                       | 2G | Front tweeter (RH) (-)                             |
|                       | 2H | _                                                  |
| 20 2M 2K 2I 2G 2E * * | 21 | Front tweeter (LH) (+)                             |
|                       | 2J | _                                                  |
|                       | 2K | Front tweeter (LH) (-)                             |
|                       | 2L | _                                                  |
|                       | 2M | Front door speaker (RH) output (-)                 |
|                       | 2N | _                                                  |
|                       | 20 | Front door speaker (RH) output (+)                 |
|                       | 2P | _                                                  |

| Terminal                |    | Signal                                              |
|-------------------------|----|-----------------------------------------------------|
|                         | 3A | SW B+ (AMP control)                                 |
|                         | 3B | SPEED signal input                                  |
|                         | 3C | Front door speaker and front tweeter (LH) input (-) |
|                         | 3D | Front door speaker and front tweeter (LH) input (+) |
|                         | 3E | Front door speaker and front tweeter (RH) input (-) |
|                         | 3F | Front door speaker and front tweeter (RH) input (+) |
| П 🖂 П                   | 3G | Rear speaker (LH) input (-)                         |
| 30 3M * 3I 3G 3E 3C 3A  | 3H | Rear speaker (LH) input (+)                         |
| 3P 3N 3L 3J 3H 3F 3D 3B | 31 | Rear speaker (RH) input (-)                         |
|                         | 3J | Rear speaker (RH) input (+)                         |
|                         | 3K | _                                                   |
|                         | 3L | AUDIOPILOT control                                  |
|                         | ЗМ | _                                                   |
|                         | 3N | Mute signal                                         |
|                         | 30 | AUDIOPILOT input (+)                                |
|                         | 3P | AUDIOPILOT input (-)                                |

09-20

### SIRIUS SATELLITE RADIO UNIT CONSTRUCTION

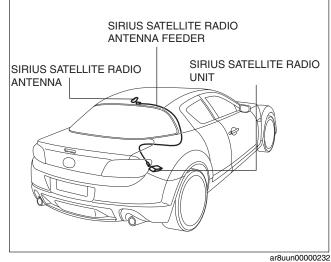
id092000829900

### Structural view

- The SIRIUS satellite radio unit are located inside the trunk side trim (RH).
  Radio waves received from the SIRIUS satellite radio antenna are converted to audio signals and sent to the audio unit/car-navigation unit.



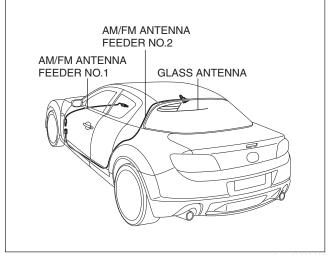
ar8uun00000300


### **Terminal Layout and Signal**

| Terminal                |    | Signal               |
|-------------------------|----|----------------------|
|                         | 1A | _                    |
|                         | 1B | _                    |
|                         | 1C | _                    |
|                         | 1D | AUDIO LH (+)         |
| 1H 1G 1F 1E 1D 1C 1B 1A | 1E | Signal ground        |
| Ш                       | 1F | AUDIO RH (+)         |
|                         | 1G | AUX DET              |
|                         | 1H | Power ground         |
|                         | 2A | Power ground         |
|                         | 2B | Ī                    |
|                         | 2C | Output signal RH (+) |
|                         | 2D | İ                    |
|                         | 2E | Output signal LH (+) |
|                         | 2F | 1                    |
|                         | 2G | Signal ground        |
| 20 2M 2K 2I 2G 2E 2C 2A | 2H | 1                    |
| 2P 2N 2L 2J 2H 2F 2D 2B | 21 | 1                    |
|                         | 2J | 1                    |
|                         | 2K | CAN (-)              |
|                         | 2L | CAN (+)              |
|                         | 2M | _                    |
|                         | 2N | 1                    |
|                         | 20 | ACC                  |
|                         | 2P | B+                   |

id092000103200

### **SIRIUS Satellite Radio Antenna**


- Installed to the center of the vehicle rear.
- SIRIUS satellite radio waves received from the roof antenna are sent to the SIRIUS satellite radio unit.



09-20

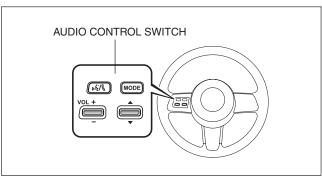
### Glass Antenna (for FM/AM)

• A glass antenna with high noise resistance has been adopted inside the rear window glass.



ar8uun00000020

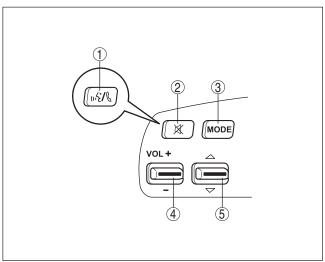
### **AUDIO CONTROL SWITCH OUTLINE**


id092000100500

• The audio control switches are located inside the left spoke of the steering wheel to make it possible to operate the audio without changing the driving posture.

### **AUDIO CONTROL SWITCH CONSTRUCTION/OPERATION**

### Construction


• Located on the left spoke of the steering wheel.



ar8uun00000017

id092000100600

### Operation



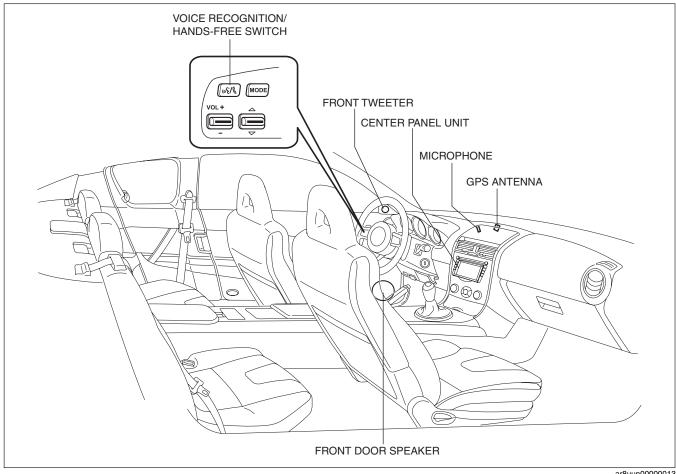
| No. | Switch (component)                                                              | Function                                                                                                   |
|-----|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 1   | Voice recognition/hands-free switch (with hands-free telephone (HF/TEL) system) | <ul> <li>Launches the HF/TEL system</li> <li>Performs car navigation system operation by voice.</li> </ul> |
| 2   | Mute switch                                                                     | Mute audio                                                                                                 |
| 3   | Mode button                                                                     | Selects the audio mode                                                                                     |
| 4   | Volume adjustment switch                                                        | Audio volume adjustment                                                                                    |
| 5   | Automatic band selector switch                                                  | Searches for radio stations automatically                                                                  |
| 3   | Cue switch                                                                      | Searches for a track                                                                                       |

id092000100800

- A touch panel has been adopted to the car-navigation system that can be operated by touching the on-screen buttons.
- A hybrid in car-navigation system and map-matching function has been adopted to improve accuracy of vehicle position.
- A voice recognition function has been adopted.
- The languages and voices available for use with the car-navigation unit include English, French, Spanish. However, the language used in this manual is in English only.

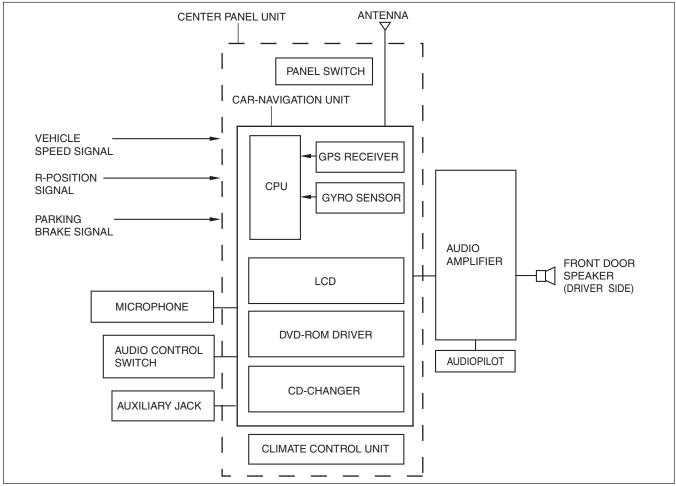
### **CAR-NAVIGATION SYSTEM SPECIFICATIONS**

id092000101100


### **Car-navigation Unit**

| Item                                |           | Specification                          |  |  |
|-------------------------------------|-----------|----------------------------------------|--|--|
| Rated voltage (V)                   |           | 12                                     |  |  |
| ROM type                            |           | DVD-ROM                                |  |  |
| Voice guidance output power (W)     |           | 5                                      |  |  |
| Display (for car-navigation system) | Size (inc | 7 (wide)                               |  |  |
|                                     | Туре      | TFT (Thin Film Transistor); Full-color |  |  |

### **CAR-NAVIGATION SYSTEM STRUCTURAL VIEW**


id092000100900

09-20



#### CAR-NAVIGATION SYSTEM BLOCK DIAGRAM

id092000101000



ar8uun00000005

#### **NAVIGATION FUNCTION**

**Outline** 

id092000101300

- A vehicle's position is measured by a hybrid method of autonomous navigation (using yaw-rate signals from the
  gyro sensor and vehicle speed signals from the instrument cluster) and GPS navigation (using signals from
  GPS satellites). Accurate detection of the vehicle's position is possible based on the adoption of a mapmatching function which specifies the vehicle's position as compared with the map data read from the DVDROM and the vehicle's position measured from autonomous navigation and GPS navigation.
- Guidance to destination is provided via display of the recommended route on the map screen, as well as voice messaging guidance at intersections and points of divergence.
- Based on inputted signals and information on the DVD-ROM, the following features are available:
  - Destination can be selected based on address, POI (Point of Interest), emergency, memory point, home, preset destination, intersection, freeway on/off ramp, coordinates, map or previous destination.
  - Route information is available in map, turn list, turn arrow, enlarged junction diagram, freeway information mode.
  - Voice guidance and menus are available in three languages.
  - A map screen that displays maps in thirteen steps with scales from 50 m to 256 km {1/32 mile to 128 mile}.
  - A map screen that displays routes according to search condition (info) and route preferences.

### Search condition

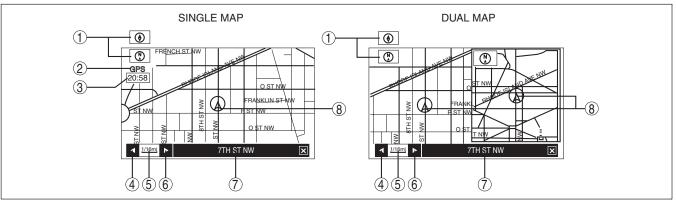
Quick: The route with the quickest time will be used.

Altern.: The alternative route will be used.

Short: The route with the shortest distance.

### **Route preferences**

Allow Major roads

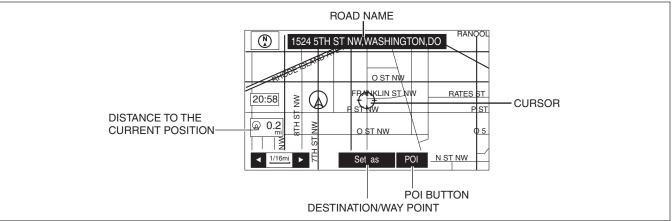

Allow toll road

Allow restricted road

Allow ferry

### Map Screen Selection Current position map

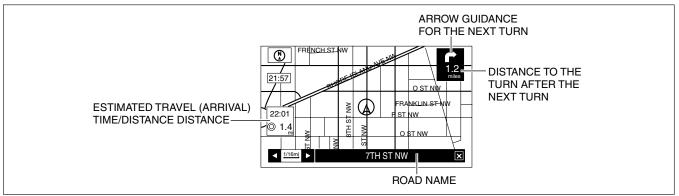
• The location of the vehicle and surrounding area are shown.




am6zzn0000063

| No. | Contents                | Description                                                                                 |
|-----|-------------------------|---------------------------------------------------------------------------------------------|
| 1   | Map orientation         | North up                                                                                    |
|     |                         | Geographic north is up.  Head up                                                            |
|     |                         | The direction you are heading is up.                                                        |
| 2   | GPS reception indicator | Illuminates when receiving signals from 3 or more satellites.                               |
| 3   | Clock                   | Clock will be displayed when set using the navigation screen.                               |
| 4   | Zoom in button          | Enlarges the map. (more detail)                                                             |
| 5   | Map scale               | The map can be displayed in 13 steps with scale from 50 m to 256 km {1/32 mile to 128 mile} |
| 6   | Zoom out button         | Reduces the map.                                                                            |
| 7   | Road name               | Shows the name of the road you are currently driving on.                                    |
| 8   | Vehicle position        | Shows the current position and direction of the vehicle.                                    |

### Scroll map mode


• This map can be scrolled with the cursor.



am6zzn0000063

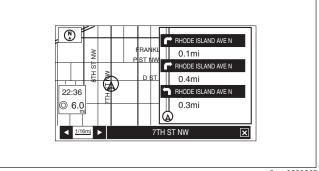
#### Guide mode


· Displays an enlarged view of the road using an arrow to indicate destination, and also displays route and destination guidance information (while in route guidance.).



am6zzn0000063

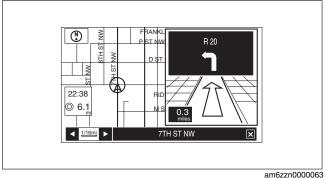
### Intersection zoom map


• An enlarged map is displayed when approaching a fork or intersection (while in route guidance.). It is activated by selecting Guidance Screen (On) in setup mode.



am6zzn0000063

### **Turn list**


While using route guidance, the directions for the next intersection where you have to turn are shown as a turn list.

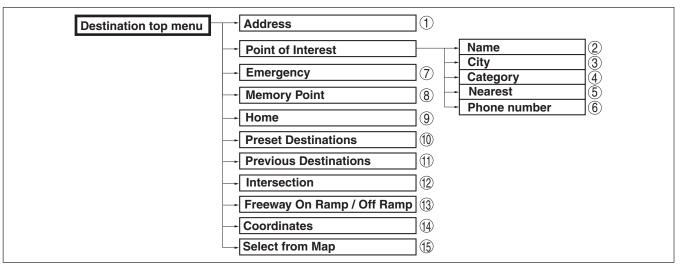


am6zzn0000063

#### **Turn arrow**

 While using route guidance, the directions for the next intersection where you have to turn are shown as a turn arrow.



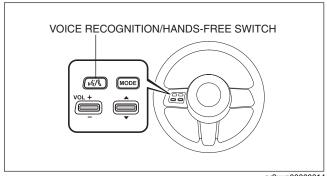

### **Destination Setting Function**

### **Outline**

• The following instructions explain how destinations can be chosen and set.

#### Note

• A destination can be set to where the crosshair cursor indicates by selecting the Destination option of the scroll map mode pop-menu.




am5uun0000017

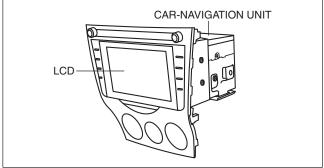
| No. | Contents                                                                                                                                                                                         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Sets destination by inputting address.                                                                                                                                                           |
| 2   | Sets destination by inputting POI name.                                                                                                                                                          |
| 3   | Sets destination by selecting POI city, inputting city name and selecting POI.                                                                                                                   |
| 4   | Sets destination by selecting POI category, inputting target name and selecting POI.                                                                                                             |
| 5   | Sets destination by inputting POI nearest facility.                                                                                                                                              |
| 6   | Sets destination by selecting POI phone number, inputting phone number and selecting POI.                                                                                                        |
| 7   | <ul> <li>Sets destination from a list of police station or hospital. (When stopped)</li> <li>Sets destination to the nearest police station or hospital automatically. (When driving)</li> </ul> |
| 8   | Sets destination from a list of points stored by the user.                                                                                                                                       |
| 9   | Sets destination to home.                                                                                                                                                                        |
| 10  | Sets destination to preset destination point.                                                                                                                                                    |
| 11  | Sets destination from a list of recent destinations.                                                                                                                                             |
| 12  | Sets destination by selecting intersection name.                                                                                                                                                 |
| 13  | Sets destination by selecting Freeway On Ramp / Off Ramp.                                                                                                                                        |
| 14  | Sets destination by inputting coordinates.                                                                                                                                                       |
| 15  | Sets destination by moving the crosshair cursor to the destination when in scroll map mode.                                                                                                      |

### **Voice Recognition Function**

 Voice control can be carried out by simply pressing voice recognition/hands-free switch and speaking voice command into the microphone.



### **CAR-NAVIGATION UNIT OUTLINE**


id092000102200

- A car navigation unit has been adopted with built-in DVD-ROM driver and MP3 applicable CD changer.
- A touch panel has been adopted to the navigation system that can be operated by touching the on-screen icons.
- A voice guidance function has been adopted which can operate the car navigation system by voice.
- An on-board diagnostic system has been adopted.
- A diagnostic assist function has been adopted.

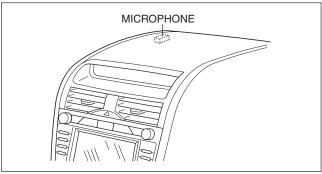
### **CAR-NAVIGATION UNIT CONSTRUCTION**

Structural view

id092000102300



## Terminal Layout and Signal Car-navigation unit connector


| Terminal                                           |    | Signal                    |
|----------------------------------------------------|----|---------------------------|
|                                                    | 1A | Front door speaker LH (+) |
|                                                    | 1B | B+                        |
|                                                    | 1C | Front door speaker LH (-) |
|                                                    | 1D | Front door speaker RH (+) |
|                                                    | 1E | TNS (+)                   |
|                                                    | 1F | Front door speaker RH (-) |
|                                                    | 1G | Illumination (-)          |
|                                                    | 1H | Antenna control           |
|                                                    | 11 | Vehicle speed signal      |
|                                                    | 1J | AMP control               |
| 1X 1V 1U 1S 1F 1D 1C 1A                            | 1K | Parking brake signal      |
|                                                    | 1L | DIM cancel                |
| 1W 1T 1P 1N 1L 1J 1H 1B 1B                         | 1M | Reverse signal            |
| 1R 1Q 10 1M 1K 1I 1G 1E                            | 1N | Steering switch 1         |
|                                                    | 10 | CAN (+)                   |
|                                                    | 1P | Steering switch 2         |
|                                                    | 1Q | CAN (–)                   |
|                                                    | 1R | ACC                       |
|                                                    | 1S | Rear speaker LH (+)       |
|                                                    | 1T | AUDIO PILOT               |
|                                                    | 1U | Rear speaker LH (–)       |
|                                                    | 1V | Rear speaker RH (+)       |
|                                                    | 1W | Power ground              |
|                                                    | 1X | Rear speaker RH (–)       |
|                                                    | 2A | Power ground              |
|                                                    | 2B | TEL (+) <sup>*1</sup>     |
|                                                    | 2C | Input signal RH (+)*2     |
|                                                    | 2D | _                         |
|                                                    | 2E | Input signal LH (+)*2     |
|                                                    | 2F | _                         |
|                                                    | 2G | Signal ground             |
|                                                    | 2H | _                         |
| 20 2M 2K 2I 2G 2E 2C 2A 2P 2P 2N 2L 2J 2H 2F 2D 2B | 21 | <del>-</del>              |
| 2P 2N 2L 2J 2H 2F 2D 2B                            | 2J | TEL (–) <sup>*1</sup>     |
|                                                    | 2K | BUS (-)*3                 |
|                                                    | 2L | BUS (+)*3                 |
|                                                    | 2M | AUX CONT*2                |
|                                                    | 2N | AUX 00N1 2                |
|                                                    | 20 | <br>ACC*3                 |
|                                                    | 2P | B+*3                      |
|                                                    | 3A | Mic (+)                   |
|                                                    | 3B | Mic (-)                   |
| 3F 3E 3D 3C 3B 3A                                  | 3C | Mic power                 |
|                                                    | 3D | Ground                    |
| [3. [35 [30 [30 ]34]]                              | 3E | Mic sence                 |
|                                                    | 3F | Steering switch 3         |

\*1 : With H/F TEL system
\*2 : Without SIRIUS satellite radio system
\*3 : With SIRIUS satellite radio system

### MICROPHONE CONSTRUCTION/OPERATION

- · Located in the speaker grill.
- · Recognize the voice entry.

id092000100700

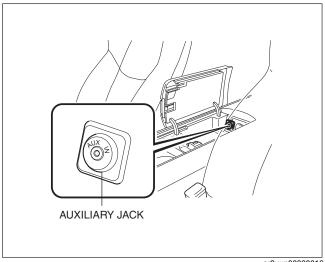


ar8uun00000012

### **Terminal Layout and Signals**

| Terminal    |   | Signals   |
|-------------|---|-----------|
|             | Α | Mic (+)   |
|             | В | Mic (-)   |
|             | С | Mic power |
| F E D C B A | D | Ground    |
|             | Е | Mic sense |
|             | F | -         |

### **AUXILIARY JACK FUNCTION**


id092000107400

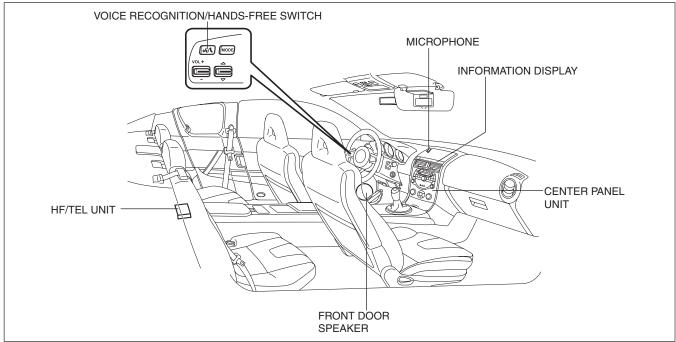
• Connects commercially-available portable audio, and outputs the sound from the speaker via the audio unit (with audio system) or car-navigation unit (with car-navigation system).

### **AUXILIARY JACK CONSTRUCTION/OPERATION**

- Auxiliary jack is installed to the rear console.
- An auxiliary jack is equipped on the upper part of the external input unit.

id092000110000




| Terminal    |   | Signal name               |
|-------------|---|---------------------------|
|             | Α | -                         |
|             | В | -                         |
| F E D C · · | С | External sound input (LH) |
|             | D | Audio ground              |
|             | E | External sound input (RH) |
|             | F | AUX DET                   |

id092000819800

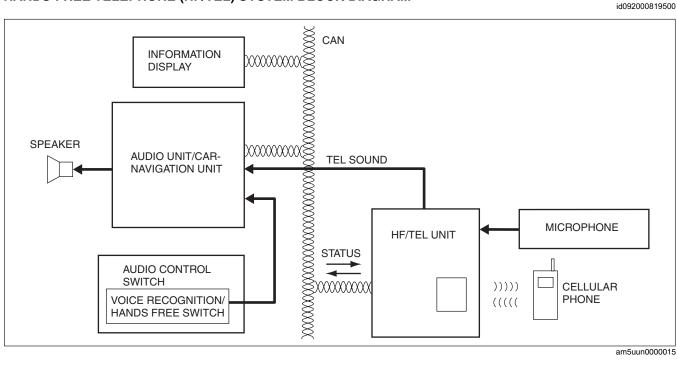
- Calls can be made without operating the cellular phone<sup>\*1</sup> directly by using the voice recognition, which allows the user to concentrate on driving.
- If the cellular phone has been programmed, Bluetooth<sup>\*2</sup> is connected automatically each time the ignition switch is turned to the ACC or ON position.
- A voice recognition microphone and a speaker are used for conversation exchange.
- \*1 : A Bluetooth applicable cellular phone is required separately as the communication device.
- \*2 : Radio communication technology in which sound and data are transferred by connecting wireless cellular phones or personal computers.

### HANDS-FREE TELEPHONE (HF/TEL) SYSTEM STRUCTURAL VIEW

id092000819700



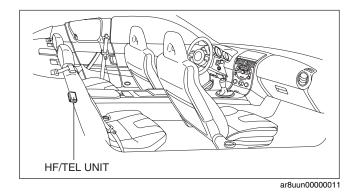
ar8uun00000010


### **Component part and Function**

| ltem                                | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HF/TEL unit                         | <ul> <li>Possesses a voice recognition function to identify voice input from the microphone.</li> <li>Outputs the call voice and voice guidance via the audio unit or audio amplifier.</li> <li>Communicates with a cellular phone using Bluetooth.</li> <li>Call-out, incoming call, and telephone number registration are controlled. The status signals are sent to the information display and audio unit via CAN.</li> </ul>                                                      |
| Microphone                          | The user voice is sent to the HF/TEL unit as electric signals.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Information display                 | Each operation status of the HF/TEL unit is displayed by the character data.                                                                                                                                                                                                                                                                                                                                                                                                           |
| Center panel unit                   | <ul> <li>Audio playback is canceled when the HF/TEL system is activated such as during an incoming call.</li> <li>The call recipient voice and voice guidance are output to the speaker.</li> <li>Bluetooth connection status, radio wave strength, roaming, and remaining battery level are displayed. (With car-navigation system)</li> <li>The car-navigation system's voice recognition is cancelled while the HF/TEL system is activated. (With car-navigation system)</li> </ul> |
| Front door speaker (driver side)    | The call recipient voice and voice guidance are output.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Voice recognition/hands-free switch | Used for activating the HF/TEL system and initiating/terminating calls.                                                                                                                                                                                                                                                                                                                                                                                                                |

09-20

### HANDS-FREE TELEPHONE (HF/TEL) SYSTEM BLOCK DIAGRAM


id092000819500



am5uun0000015

### HANDS-FREE TELEPHONE (HF/TEL) SYSTEM CONSTRUCTION

### Structural view



# Terminal Layout and Signal HF/TEL unit

| Terminal                                        |   | Signal              |
|-------------------------------------------------|---|---------------------|
|                                                 | A | MIC output (+)      |
|                                                 | В | MIC input (+)       |
|                                                 | С | MIC output (-)      |
|                                                 | D | MIC input (-)       |
|                                                 | E | MIC output shield   |
|                                                 | F | MIC input shield    |
|                                                 | G | Audio output (+)    |
|                                                 | Н | Audio output (-)    |
|                                                 | 1 | _                   |
|                                                 | J | MIC SENSE           |
| W U S Q O M K I G E C A X V T R P N L J H F D B | К | _                   |
|                                                 | L | Audio output shield |
|                                                 | М | -                   |
|                                                 | N | _                   |
|                                                 | 0 | _                   |
|                                                 | Р | _                   |
|                                                 | Q | CAN (+)             |
|                                                 | R | CAN (-)             |
|                                                 | S | -                   |
|                                                 | Т | GND                 |
|                                                 | U | MIC B+              |
|                                                 | V | -                   |
|                                                 | W | ACC                 |
|                                                 | Х | B+                  |

09-20

### HANDS-FREE TELEPHONE (HF/TEL) SYSTEM FUNCTION

id092000819600

- The following functions have been adopted.
  Operates by voice recognition/hands-free switch. Refer to the user's instructions for the operation method.

|                  | Function                       |                | Outline                                                                                                                                                                                                                                                                       |  |  |  |  |
|------------------|--------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                  | Callout using telephone number |                | Call is made by the user calling out the telephone number.                                                                                                                                                                                                                    |  |  |  |  |
| Callout          | Callout using telephone book   |                | Call is made by a calling out the name of a person whose telephone number has been registered in the telephone book in advance.                                                                                                                                               |  |  |  |  |
|                  | Redialing                      |                | Redialing a telephone number previously dialed.                                                                                                                                                                                                                               |  |  |  |  |
|                  | Emergency cal                  | ls             | Calls the emergency "911" number.                                                                                                                                                                                                                                             |  |  |  |  |
| Incoming call    | Receiving calls                |                | <ul> <li>Notifies the users that their cellular phone is being called immediately after the incoming call is detected.</li> <li>Call is initiated.</li> </ul>                                                                                                                 |  |  |  |  |
|                  | Call rejection                 |                | Calls are rejected.                                                                                                                                                                                                                                                           |  |  |  |  |
|                  | Mute                           |                | Input from the microphone is interrupted during the call.                                                                                                                                                                                                                     |  |  |  |  |
|                  | Transfer                       |                | Switches a standard call using a cellular phone to a call using a hands-free phone.                                                                                                                                                                                           |  |  |  |  |
| Active call      |                                | Call interrupt | <ul> <li>An additional incoming call can be received during the current one. In this case, the first call is interrupted.</li> <li>Call interrupt can be refused.</li> </ul>                                                                                                  |  |  |  |  |
|                  | Multiple calls Switching calls |                | <ul> <li>Press the voice recognition/hands-free switch to switch the call.</li> <li>Voice recognition/hands-free switch (short press): The current call is put on hold.</li> <li>Voice recognition/hands-free switch (long press): The current call is terminated.</li> </ul> |  |  |  |  |
| Telephone        | Registration                   |                | <ul> <li>Registers telephone numbers to the telephone book in the HF/TEL unit.</li> <li>32 names can be programmed for each language.</li> <li>The telephone numbers of four places (home, work, mobile, pager) can be programmed under one name.</li> </ul>                  |  |  |  |  |
| book             | Edit                           |                | Correct/change the registered data.                                                                                                                                                                                                                                           |  |  |  |  |
|                  | Clear                          |                | Clears a single registered data or collectively.                                                                                                                                                                                                                              |  |  |  |  |
|                  | View                           |                | Guides the registered data sequentially using voice.                                                                                                                                                                                                                          |  |  |  |  |
| Device pairing/  | Pairing                        |                | <ul> <li>A maximum of seven Bluetooth applicable cellular phones can be paired.</li> <li>Connection priority ranking and four-digit PIN numbers must be input during pairing.</li> </ul>                                                                                      |  |  |  |  |
| selection        | Clear                          |                | Clear the device paired by each device or collectively.                                                                                                                                                                                                                       |  |  |  |  |
|                  | View                           |                | Guides the paired devices sequentially using voice.                                                                                                                                                                                                                           |  |  |  |  |
|                  | Language setting               |                | Language used for voice recognition, voice guidance, and display can be selected from three languages (English, French, and Spanish).                                                                                                                                         |  |  |  |  |
| Satting          | Password setting/cancellation  |                | <ul> <li>Password can be set.</li> <li>If a password is set, the HF/TEL system does not operate until it is input.</li> </ul>                                                                                                                                                 |  |  |  |  |
| Setting          | Confirmation prompt setting    |                | <ul> <li>Confirms using voice guidance before executing the operation indicated by the user.</li> <li>When it is set to OFF, confirmation guidance is skipped.</li> </ul>                                                                                                     |  |  |  |  |
|                  | Volume                         |                | Adjusts the call and voice guidance volumes.                                                                                                                                                                                                                                  |  |  |  |  |
| Other            | HF/TEL system                  | n stop         | Stops the HF/TEL system operation.                                                                                                                                                                                                                                            |  |  |  |  |
|                  | Voice training                 |                | <ul> <li>Learns features of the voice/pronunciation of the person making the call and improves voice recognition.</li> <li>Voice training for up to one person can be done for each language.</li> </ul>                                                                      |  |  |  |  |
|                  | Help                           |                | <ul> <li>When "Help" is called out, the system switches to this function at any step.</li> <li>Guides all executable voice commands.</li> </ul>                                                                                                                               |  |  |  |  |
| Diagnosis system |                                |                | The on-board diagnostic system has a self-diagnostic function and diagnostic assist function to help technicians locate malfunctions.                                                                                                                                         |  |  |  |  |

## 09-22

## 09-22 INSTRUMENTATION/DRIVER INFO.

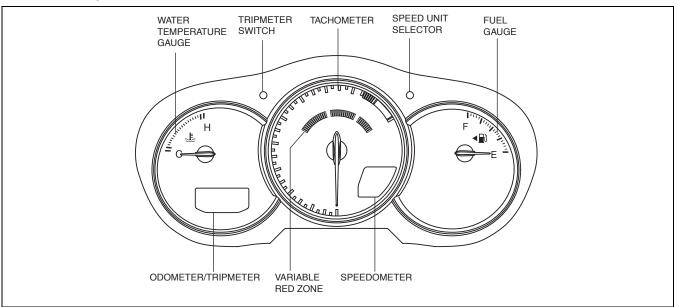
| INSTRUMENT CLUSTER OUTLINE 09-22-1  | TACHOMETER CONTROL                  |
|-------------------------------------|-------------------------------------|
| INSTRUMENT CLUSTER                  | CONSTRUCTION/OPERATION 09-22-7      |
| SPECIFICATIONS 09-22-1              | Variable Red Zone Control           |
| INSTRUMENT CLUSTER                  | INPUT/OUTPUT CHECK MODE             |
| STRUCTURAL VIEW 09-22-2             | OPERATION                           |
| Meter and Gauge 09-22-2             | Input circuit check                 |
| Warning and Indicator Light 09-22-2 | INFORMATION DISPLAY                 |
| INSTRUMENT CLUSTER SYSTEM           | FUNCTION                            |
| WIRING DIAGRAM                      | INFORMATION DISPLAY                 |
| TACHOMETER CONTROL                  | CONSTRUCTION/OPERATION 09-22-8      |
| OUTLINE                             | Display Function                    |
|                                     | Clock function                      |
|                                     | Input/output Check Function 09-22-9 |

### **INSTRUMENT CLUSTER OUTLINE**

id092200100200

• Variable red zone has been adopted that changes the red zone display of the engine speed according to the engine coolant temperature.

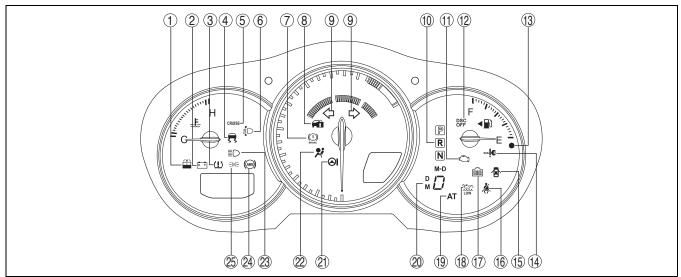
### **INSTRUMENT CLUSTER SPECIFICATIONS**


id092200101100

|                                  |                      |      | id092200101100                                                                               |
|----------------------------------|----------------------|------|----------------------------------------------------------------------------------------------|
| Ite                              | m                    |      | Specification                                                                                |
| Warning/indicator alarms         |                      |      |                                                                                              |
| Sound frequency                  |                      | (Hz) | 1,800-2,600                                                                                  |
|                                  | Sound frequency (H.  |      | 1,900                                                                                        |
| Lights-on reminder warning alarm | Sound cycle          |      | CONTINUOUS ON OFF                                                                            |
|                                  | Sound frequency      | (Hz) | 1,800                                                                                        |
| Key reminder warning alarm       | Sound cycle          |      | ON CONTINUOUS  OFF 11 + 12 + 13 + 13: approx. 0.22 s  12: approx. 0.33 s  13: approx. 1.25 s |
|                                  | Sound frequency (Hz) |      | 2,000                                                                                        |
| Oil level warning alarm          | Sound cycle          |      | t 1<br>O N<br>O F F                                                                          |
|                                  | Sound frequency      | (Hz) | 2,600                                                                                        |
| Tire pressure warning alarm      | Sound cycle          |      | ON t1: approx. 0.3 s t2: approx. 0.6 s                                                       |
|                                  | Sound frequency      | (Hz) | 2,600                                                                                        |
| Over-revolution warning alarm    | Sound cycle          |      | CONTINUOUS ON OFF                                                                            |

### **INSTRUMENT CLUSTER STRUCTURAL VIEW**

AL VIEW


### **Meter and Gauge**



ar8uun00000222

id092200101200

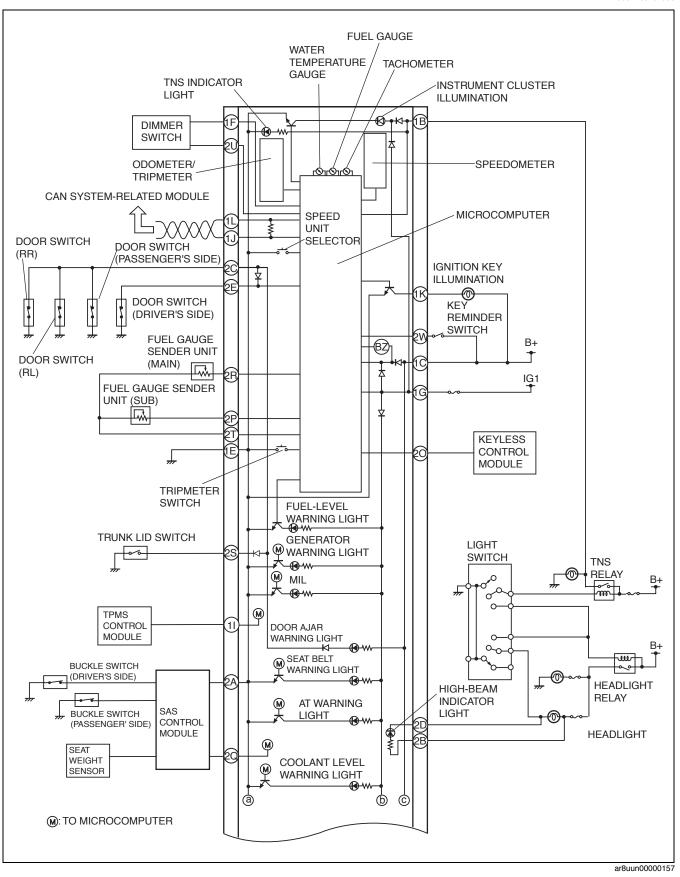
### **Warning and Indicator Light**



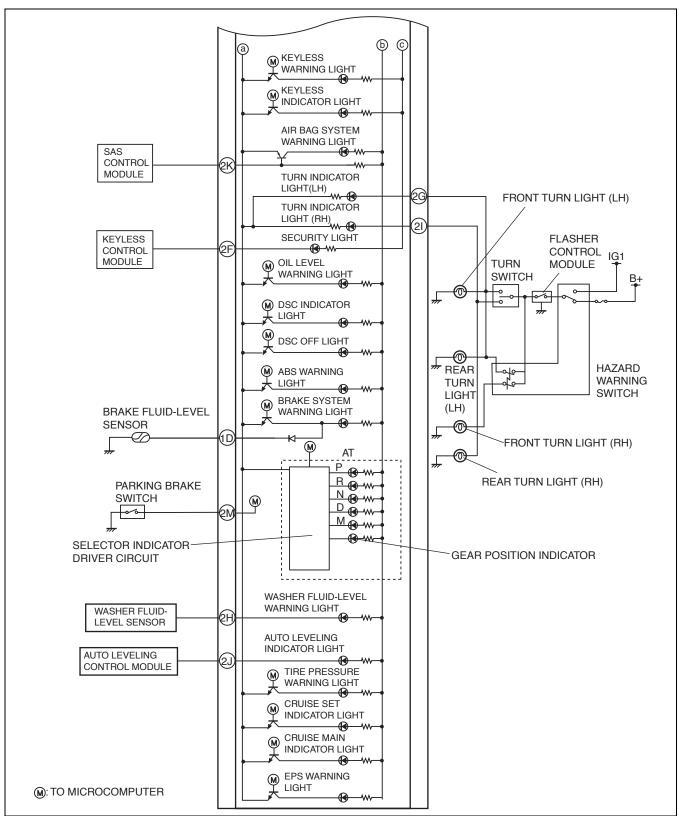
ar8uun00000217

### x: Applicable

| No. | Warning and indicator light      | Input signal source          | CAN system | Description                                                                                                                          | Note                                    |
|-----|----------------------------------|------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 1   | Washer fluid level warning light | Washer fluid level<br>sensor | _          | When the washer fluid-level is low, the washer fluid level warning light illuminates. (See BODY & ACCESSORIES, WIPER/WASHER SYSTEM.) | With<br>washer<br>fluid level<br>sensor |
| 2   | Generator warning light          | PCM                          | ×          | Illuminates if the generator output is not normal. (See ENGINE, CHARGING SYSTEM.)                                                    | _                                       |


## INSTRUMENTATION/DRIVER INFO.

| No. | Warning and indicator light                                             | Input signal source                                                  | CAN<br>system | Description                                                                                                                                                                                                                                                                                                                                                                 | Note                                                             |
|-----|-------------------------------------------------------------------------|----------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 3   | Tire pressure monitoring system (TPMS) warning                          | em (TPMS) warning                                                    |               | If the TPMS system is malfunctioning or the tire pressure is abnormal, the tire pressure warning light remains illuminated. (See 02-12-6 TIRE PRESSURE MONITORING                                                                                                                                                                                                           | With<br>TPMS,<br>advanced<br>keyless<br>and start<br>system      |
|     | light                                                                   | Keyless receiver                                                     | _             | SYSTEM (TPMS) WARNING LIGHT<br>CONSTRUCTION.)                                                                                                                                                                                                                                                                                                                               | With<br>TPMS,<br>keyless<br>entry<br>system                      |
| 4   | DSC indicator light                                                     | DSC HU/CM                                                            | ×             | <ul> <li>If the DSC system is malfunctioning, the DSC indicator light remains illuminated.         (See 04-02-2 ON-BOARD DIAGNOSTIC SYSTEM FUNCTION [DYNAMIC STABILITY CONTROL (DSC)].)</li> <li>When the DSC or TCS is operating, the DSC indicator light flashes.         (See 04-02-2 ON-BOARD DIAGNOSTIC SYSTEM FUNCTION [DYNAMIC STABILITY CONTROL (DSC)].)</li> </ul> | With DSC                                                         |
| 5   | Cruise main indicator light (amber)  Cruise set indicator light (green) | PCM                                                                  | ×             | Illuminates if the cruise control system is in control status. (See 01-20-1 CRUISE CONTROL SYSTEM OUTLINE [13B-MSP].)                                                                                                                                                                                                                                                       | With cruise<br>control<br>system                                 |
| 6   | Headlight auto leveling warning light                                   | Auto leveling control module                                         | _             | The headlight auto leveling system warning light illuminates if a malfunction in the auto leveling system is detected. (See BODY & ACCESSORIES, LIGHTING SYSTEMS.)                                                                                                                                                                                                          | With<br>headlight<br>auto<br>leveling<br>system                  |
|     | ABS HU/                                                                 |                                                                      | ×             | If the ABS system is malfunctioning, the brake system warning light remains illuminated. (See BRAKE, ON-BOARD DIAGNOSTIC SYSTEM.)                                                                                                                                                                                                                                           | With ABS                                                         |
| 7   | Brake system warning light                                              | DSC HU/CM                                                            | ×             | If the DSC system is malfunctioning, the brake system warning light remains illuminated. (See 04-02-2 ON-BOARD DIAGNOSTIC SYSTEM FUNCTION [DYNAMIC STABILITY CONTROL (DSC)].)                                                                                                                                                                                               | With DSC                                                         |
|     |                                                                         | Brake fluid-level sensor                                             | _             | Illuminates when engine oil level is the specified value or less.                                                                                                                                                                                                                                                                                                           |                                                                  |
|     |                                                                         | Parking brake switch                                                 | _             | When the parking brake is operating, the brake system warning light illuminates.                                                                                                                                                                                                                                                                                            | _                                                                |
| 8   | Security light                                                          | Keyless control<br>module                                            | _             | Illuminates or flashes when immobilizer system has malfunction.                                                                                                                                                                                                                                                                                                             | With advanced keyless and start system With keyless entry system |
| 9   | Turn indicator light                                                    | <ul><li>Light switch</li><li>Hazard<br/>warning<br/>switch</li></ul> | _             | <ul> <li>Flashes when ignition switch is ON position during turn switch operation.</li> <li>Flashes when hazard warning switch is on.</li> </ul>                                                                                                                                                                                                                            | _                                                                |
| 10  | Selector indicator light                                                | TCM                                                                  | ×             | The selector indicator light displays the selector lever position. (See TRANSMISSION/TRANSAXLE, AUTOMATIC TRANSMISSION [SJ6A-EL].)                                                                                                                                                                                                                                          | AT                                                               |
| 11  | MIL                                                                     | PCM                                                                  | ×             | Illuminates if a malfunction occurs in the engine control system and the automatic transmission control system. (See ENGINE, ON-BOARD DIAGNOSTIC.)                                                                                                                                                                                                                          | _                                                                |


## INSTRUMENTATION/DRIVER INFO.

| No. | Warning and indicator light                 | Input signal source                        | CAN<br>system | Description                                                                                                                                                                                                                                                                                                              | Note                           |
|-----|---------------------------------------------|--------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 12  | DSC OFF indicator light                     | DSC HU/CM                                  | ×             | <ul> <li>If the DSC system is malfunctioning, the DSC OFF light remains flashed.         (See 04-02-2 ON-BOARD DIAGNOSTIC SYSTEM FUNCTION [DYNAMIC STABILITY CONTROL (DSC)].)</li> <li>When the DSC OFF switch is pressed to disable, the DSC OFF light illuminates. (See BRAKE, ON-BOARD DIAGNOSTIC SYSTEM.)</li> </ul> | With DSC                       |
| 13  | Fuel-level warning light                    | Fuel gauge sender unit                     | _             | When the remaining fuel amount in the fuel tank is low, the fuel-level warning light illuminates.                                                                                                                                                                                                                        | _                              |
|     | Keyless indicator light (green)             | Keyless control                            |               | Illuminates when start knob is pressed.                                                                                                                                                                                                                                                                                  | With advanced                  |
| 14  | Keyless warning light (red)                 | module                                     | ×             | Illuminates or flashes when keyless control module has malfunction.                                                                                                                                                                                                                                                      | keyless<br>and start<br>system |
| 15  | Door ajar warning light                     | Door switch,<br>Trunk lid opener<br>switch | 1             | Illuminates when door or trunk lid is open.                                                                                                                                                                                                                                                                              | _                              |
| 16  | Seat belt warning light                     | SAS control module                         | _             | Warns the driver that the seat belt (driver side or passenger side) is unfastened                                                                                                                                                                                                                                        | _                              |
| 17  | Coolant level warning light                 | PCM                                        | ×             | Illuminates when engine coolant level is the specified value or less.                                                                                                                                                                                                                                                    | _                              |
| 18  | Oil level warning light                     | PCM                                        | ×             | <ul> <li>Illuminates when engine oil level is the specified value or less.</li> <li>Flashes when a DTC is recorded in the PCM after a malfunction in the oil supply control occurs.</li> </ul>                                                                                                                           | _                              |
| 19  | AT warning light                            | ТСМ                                        | ×             | The AT warning light illuminates to alert the driver of a malfunction in the automatic transmission. (See TRANSMISSION/TRANSAXLE, AUTOMATIC TRANSMISSION [SJ6A-EL].)                                                                                                                                                     | AT                             |
| 20  | Gear position indicator light               | TCM                                        | ×             | The gear position indicator light displays the gear position when in the manual mode. (See TRANSMISSION/TRANSAXLE, AUTOMATIC TRANSMISSION [SJ6A-EL].)                                                                                                                                                                    | AT                             |
| 21  | Electric power steering (EPS) warning light | EPS control module                         | ×             | Illuminates when EPS system has malfunction. (See STEERING, ON-BOARD DIAGNOSTIC.)                                                                                                                                                                                                                                        | _                              |
| 22  | Air bag system warning light                | SAS control module                         | -             | Illuminates or flashes when SRS air bag system has malfunction. (See RESTRAINTS, ON-BOARD DIAGNOSTIC.)                                                                                                                                                                                                                   | _                              |
| 23  | High-beam indicator light                   | Light switch                               | _             | When the headlight (high-beam) illuminates, the high-beam indicator light illuminates.                                                                                                                                                                                                                                   | _                              |
| 24  | ABS warning light                           | ABS HU/CM,<br>DSC HU/CM                    | ×             | If the ABS/DSC system is malfunctioning, the ABS warning light remains illuminated. (See BRAKE, ON-BOARD DIAGNOSTIC SYSTEM.) (See 04-02-2 ON-BOARD DIAGNOSTIC SYSTEM FUNCTION [DYNAMIC STABILITY CONTROL (DSC)].)                                                                                                        | _                              |
| 25  | TNS indicator light                         | TNS relay                                  | _             | When the TNS illuminates, the TNS indicator light illuminates.                                                                                                                                                                                                                                                           | _                              |

09-22

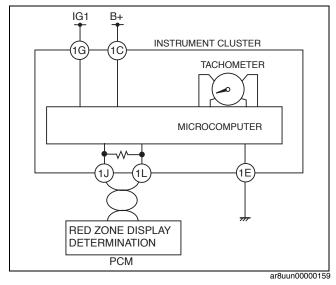


### INSTRUMENTATION/DRIVER INFO.

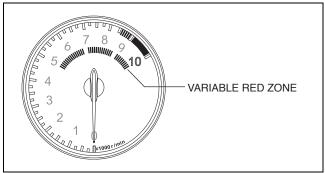


### **TACHOMETER CONTROL OUTLINE**

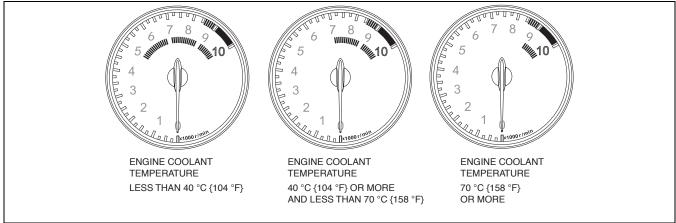
id092200102300


id092200102200

Variable red zone has been adopted that changes the red zone display of the engine speed according to the
engine coolant temperature.


### TACHOMETER CONTROL CONSTRUCTION/OPERATION

### **Variable Red Zone Control**


 The PCM determines the red zone of the engine speed based on the engine coolant temperature signal from the ECT sensor, and outputs a variable red zone display request signal to the instrument cluster via CAN system.



- The instrument cluster switches the variable red zone display in the tachometer based on the red zone display request signal input from the PCM.
- Variable red zone has three display patterns that are switched according to the engine coolant temperature.



ar8uun00000160



| Engine coolant                                     | Range of variable red zone |           |  |  |
|----------------------------------------------------|----------------------------|-----------|--|--|
| temperature                                        | 5MT, 6AT                   | 6MT       |  |  |
| Less than 40 °C {104 °F}                           | 5,000 rpm                  | 5,000 rpm |  |  |
| 40 °C {104 °F} or more and less than 70°C {158 °F} | 6,500 rpm                  | 7,000 rpm |  |  |
| 70 °C {158 °F} or more                             | 7,500 rpm                  | 9,000 rpm |  |  |

### INSTRUMENTATION/DRIVER INFO.

### INPUT/OUTPUT CHECK MODE OPERATION

id092200100900

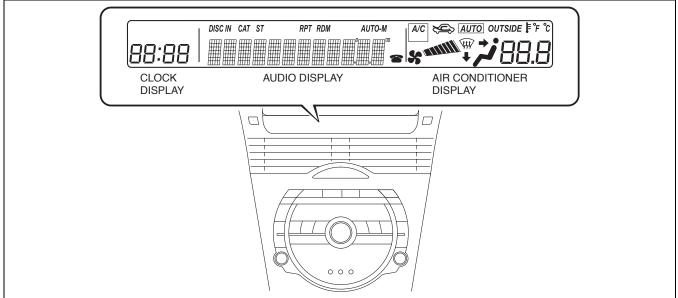
### Input circuit check

• When the parts listed in the chart are operated and output a signal to the instrument cluster, the built in microcomputer judges the quality of the input circuit based on that signal.

| Check code | Parts sending input signal     |  |  |  |  |
|------------|--------------------------------|--|--|--|--|
| 01         | Buckle switch (Driver side)    |  |  |  |  |
| 55         | Dimmer cancel switch           |  |  |  |  |
| 58         | Buckle switch (Passenger side) |  |  |  |  |

#### INFORMATION DISPLAY FUNCTION

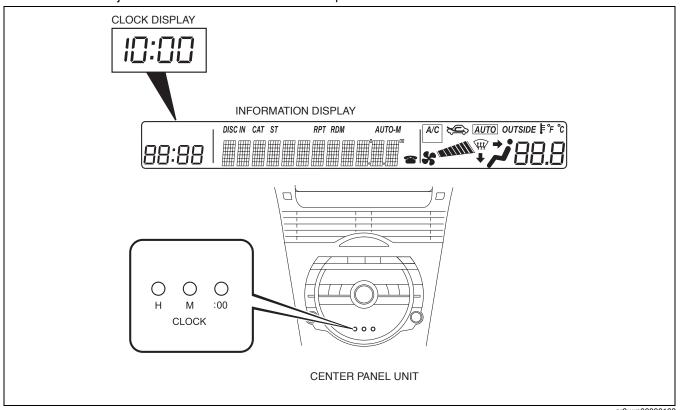
id092200100500


- The information display has the following functions:
  - Input/output check function

### INFORMATION DISPLAY CONSTRUCTION/OPERATION

id092200100400

### **Display Function**


• Displays information for the audio system (such as volume and frequency) and air conditioner system (such as air flow volume, set temperature and mode) based on the signals from the center panel unit.



### INSTRUMENTATION/DRIVER INFO.

#### **Clock function**

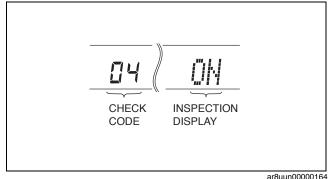
- · A clock is integrated.
- Time can be adjusted with the buttons on the center panel module.



ar8uun00000163

### Input/output Check Function

 An input/output check function has been adopted which performs signal input to the display and examines the LCD according to the micro-computer built into the information display.


### Check code

· When the signal output part indicated in the table below is activated, the micro-computer performs selfdiagnosis of the signal input to the information display. Also, inspection of segments and dots is possible by illuminating the entire LCD.

| Check code | Signal output part                    | Malfunction location                      |
|------------|---------------------------------------|-------------------------------------------|
| 01         | Information display                   | CAN system communication error            |
| 02         | Audio unit     Climate control module | Communication error to signal output part |
| 04         | Light switch (TNS position)           | 10.5                                      |
| 06         | Ignition switch                       | Ignition switch                           |
| 07         | Dimmer cancel switch                  | Dimmer cancel switch                      |
| _          | LCD                                   | LCD                                       |

#### Check code display

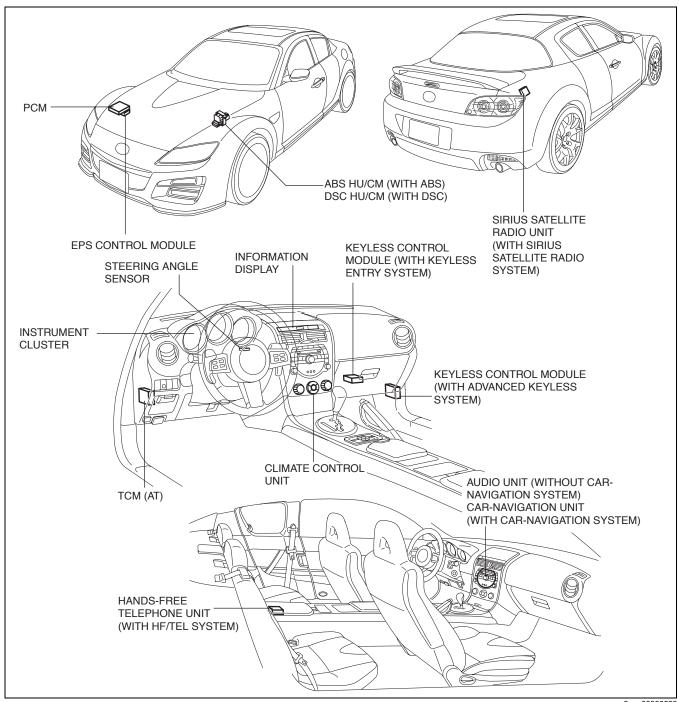
· The check code and inspection display are displayed in the LCD clock and audio display areas.



### 09-40

### 09-40 CONTROL SYSTEM

| CONTROL SYSTEM OUTLINE 09-40-1 CONTROL SYSTEM STRUCTURAL | MECHANISM OF CAN (CONTROLLER AREA NETWORK) SYSTEM-RELATED |
|----------------------------------------------------------|-----------------------------------------------------------|
| VIEW 09-40-2                                             | MODULE STRUCTURE                                          |
| CONTROLLER AREA NETWORK                                  | CONTROLLER AREA NETWORK (CAN)                             |
| (CAN) SYSTEM OUTLINE 09-40-2                             | SYSTEM SIGNAL-CHART09-40-7                                |
| CONTROLLER AREA NETWORK                                  | TWISTED PAIR CONSTRUCTION09-40-9                          |
| (CAN) SYSTEM WIRING                                      | ON-BOARD DIAGNOSTIC OUTLINE                               |
| DIAGRAM 09-40-3                                          | [CAN (CONTROLLER AREA                                     |
| CONTROLLER AREA NETWORK                                  | NETWORK)]09-40-9                                          |
| (CAN) SYSTEM                                             | ON-BOARD DIAGNOSTIC FUNCTION                              |
| CONSTRUCTION/OPERATION 09-40-4                           | [CAN (CONTROLLER AREA                                     |
| CAN system                                               | NETWORK)]09-40-10                                         |
| Time-Division Multiplexing 09-40-4                       | Block Diagram09-40-10                                     |
| 3                                                        | On-Board Diagnostic Function 09-40-11                     |
|                                                          | Narrowing down malfunction                                |
|                                                          | locations                                                 |
|                                                          |                                                           |


### **CONTROL SYSTEM OUTLINE**

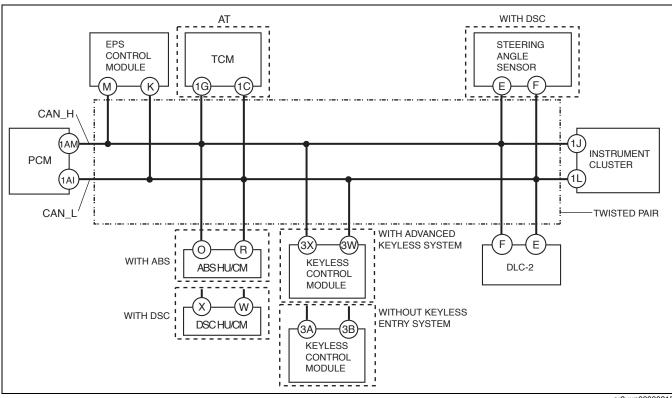
id094000103000

- A CAN system (Control Area Network) has been adopted in which multiple signals are transmitted over a single communication path as a result of wiring harness simplification.
- Twisted-pair wiring is used for connections between the following modules.
  - PCM
  - EPS control module
  - ABS HU/CM (with ABS)
  - DSC HU/CM (with DSC)
  - TCM (AT)
  - Keyless control module
  - Steering angle sensor (with DSC)
  - Instrument cluster
  - Information display
  - Audio unit (without car-navigation system)
  - Car-navigation unit (with car-navigation system)
  - SIRIUS satellite radio unit (with SIRIUS satellite radio system)
  - Hands-free telephone unit (with HF/TEL system)
  - Climate control unit
- With an on-board diagnostic function included for each multiplex module, display of DTCs using the Mazda Modular Diagnostic System (M-MDS) has improved serviceability.

### **CONTROL SYSTEM STRUCTURAL VIEW**

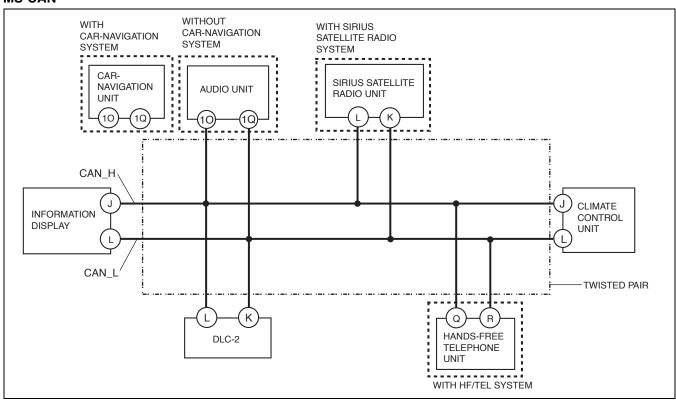
id094000103100




### ar8uun00000088

### **CONTROLLER AREA NETWORK (CAN) SYSTEM OUTLINE**

- The CAN system is a network which utilizes time-division multiplexing to enable transmission of multiple signals over a single communication path from related modules.
- The CAN system utilizes twisted pair wiring harnesses for transmission.


id094000103400

### **HS-CAN**

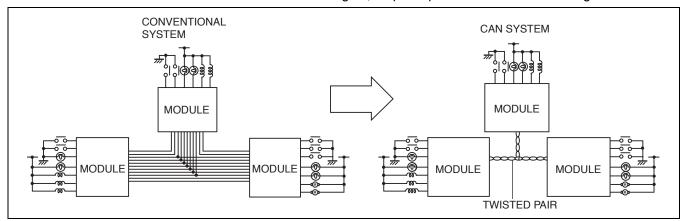


ar8uun00000315

### **MS-CAN**



ar8uun00000316


09-40

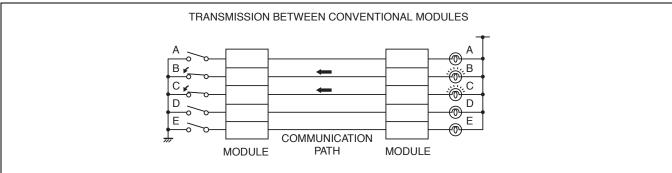
### CONTROLLER AREA NETWORK (CAN) SYSTEM CONSTRUCTION/OPERATION

id094000103500

### **CAN system**

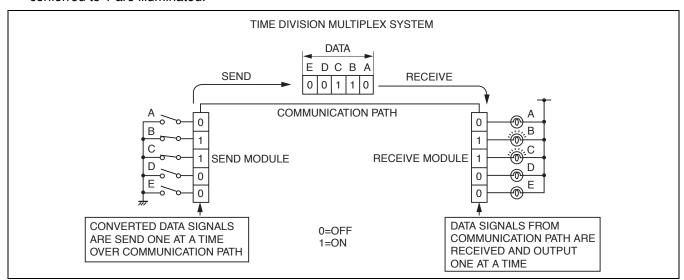
- Transmission of information to and from modules is done using time-division multiplexing.
- The signals transmitted from a single module are communicated to all other modules via the twisted pair wiring harnesses. When each module receives a relevant signal, output is performed based on the signal.




ar8uun00000312

### **Time-Division Multiplexing**

- Control signals are converted to data composed of 0s and 1s, and transmitted.
- By transmitting multiple signals which are divided by time, more information can be transmitted using fewer wiring harnesses.


### Transmission between conventional modules

- To illuminate 5 individual bulbs, 5 separate communication paths from switch to bulb are needed.
- To illuminate bulbs B and C, it is necessary to connect switches B and C to pass current along the communication paths.

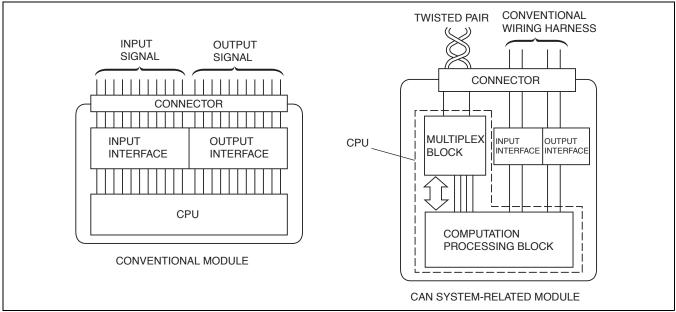


### Transmission between modules based on time-division multiplexing

- To illuminate 5 individual bulbs, only one communication path from switch to bulb is necessary.
- To illuminate B and C bulbs, the transmitting module combines B and C into a single data, converts data A, D, and E to 0, and then transmits. When the signal is received by the module, bulbs B and C with data signals conferred to 1 are illuminated.



ar8uun00000320


09-40

### MECHANISM OF CAN (CONTROLLER AREA NETWORK) SYSTEM-RELATED MODULE STRUCTURE

id094000103700

- The CAN system related module consists of a power supply circuit, CPU, input/output interface, and twisted pair wiring harnesses.
- With the utilization of twisted pair wiring harnesses, the now-redundant input/output parts integrated in the conventional modules have been simplified.
- The CAN system related module is completely controlled by the CPU.
- The CPU consists of a multiplex block and computation processing block.
- Each component part has the following functions:

|                                                   | Component          | Function                                                                                                                                                                                                     |  |  |  |  |
|---------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                   | Electrical circuit | Supplies power to the CPU and surrounding area and input/output interface.                                                                                                                                   |  |  |  |  |
| Computation processing block CPU  Multiplex block |                    | When transmission is necessary, transmission data is written to the multiplex block. In addition, when a transmission data write command is received from the multiplex block, the received data is written. |  |  |  |  |
|                                                   |                    | Receives data from twisted pair wiring harnesses and sends it to the computation processing block.  Sends data written by the computation processing block via the twisted pair wiring harnesses.            |  |  |  |  |
| Input interface                                   |                    | Changes the electrical properties of information, such as switch information, to information which can be input to the CPU.                                                                                  |  |  |  |  |
| Output interface                                  |                    | Changes the electrical properties of the CPU output in order to drive devices such as motors.                                                                                                                |  |  |  |  |



### CONTROLLER AREA NETWORK (CAN) SYSTEM SIGNAL-CHART

id094000103800

- The instrument cluster controls the TPMS.Signals transmitted using the CAN system are as follows:

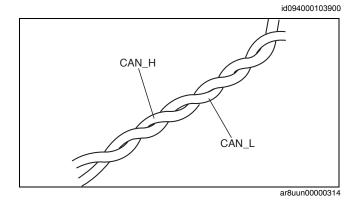
### HS-CAN

OUT: Output (sends signal) IN: Input (receives signal)

|                                                |           |                          |             | Multiplex                                   | module                       | 11 11 11 11 | out (receiv                                  | co oigilai)               |
|------------------------------------------------|-----------|--------------------------|-------------|---------------------------------------------|------------------------------|-------------|----------------------------------------------|---------------------------|
| Signal                                         | РСМ       | EPS<br>control<br>module | TCM<br>(AT) | ABS HU/ CM (with ABS) DSC HU/ CM (with DSC) | Keyless<br>control<br>module | TPMS        | Steering<br>angle<br>sensor<br>(with<br>DSC) | Instrum<br>ent<br>cluster |
| Immobilizer system related information         | OUT<br>IN | _                        | _           | _                                           | IN<br>OUT                    |             | _                                            | _                         |
| Engine speed                                   | OUT       | IN                       | IN          | _                                           | IN                           |             | _                                            | IN                        |
|                                                |           | IIN                      |             | IN                                          | IIN                          |             |                                              | IIN                       |
| Engine status                                  | OUT       |                          | IN          |                                             |                              | _           | _                                            |                           |
| Over-revolution warning alarm status           | OUT       |                          |             |                                             |                              | _           |                                              | IN                        |
| Variable red zone                              | OUT       | _                        |             | _                                           |                              | _           |                                              | IN                        |
| Vehicle speed                                  | OUT       | IN                       |             | _                                           | _                            | IN          |                                              | IN                        |
| veriloie speed                                 | IN        |                          | OUT         |                                             |                              |             | _                                            |                           |
| Throttle valve opening angle                   | OUT       | _                        | IN          | IN                                          |                              | _           | _                                            | _                         |
| Engine coolant temperature                     | OUT       | _                        | IN          | _                                           |                              | _           | _                                            | IN                        |
| Engine torque                                  | OUT       | _                        | _           | IN                                          |                              | _           | _                                            | _                         |
|                                                | OUT       | OUT                      |             | _                                           |                              |             |                                              | IN                        |
| Travelled distance                             | IN        |                          | _           | OUT                                         | _                            | _           |                                              | IN                        |
|                                                | _         | _                        | _           | _                                           |                              | IN          |                                              | OUT                       |
| Fuel injection amount                          | OUT       | _                        |             | _                                           |                              | _           | _                                            | IN                        |
| Engine oil level                               | OUT       |                          |             |                                             |                              | _           |                                              | IN                        |
| Engine coolant level                           | OUT       | —                        |             | —                                           |                              | _           | _                                            | IN                        |
| Fuel pump status                               | OUT       |                          |             |                                             |                              | _           | _                                            | IN                        |
| MIL on request                                 | OUT       |                          | OUT         |                                             |                              | _           | _                                            | IN<br>—                   |
| Transmission/axle specification                | OUT       | _                        | _           | —<br>IN                                     | _                            | _           | _                                            | _                         |
| Transmission construction                      | OUT       | _                        |             |                                             | _                            |             | _                                            | IN                        |
| Tire size                                      | OUT       |                          | IN          | IN                                          | _                            |             |                                              |                           |
| Cruise control main indicator light on request | OUT       | _                        | IN          |                                             | _                            | _           | _                                            | IN                        |
| Cruise control indicator light on request      | OUT       | _                        | IN          | _                                           | _                            |             | _                                            | IN                        |
| Downshift request                              | OUT       | _                        | IN          | _                                           | _                            | _           | _                                            | _                         |
| EPS warning light on request                   | _         | OUT                      | _           | _                                           | _                            | _           | _                                            | IN                        |
|                                                | IN        | OUT                      | _           | _                                           | _                            | _           | _                                            | _                         |
| Idle speed increase request                    | IN        | _                        | OUT         | _                                           | _                            | _           | _                                            |                           |
| Buzzer control                                 |           | _                        |             | _                                           | OUT                          |             | _                                            | IN                        |
| Keyless warning light illumination request     |           | _                        | _           | _                                           | OUT                          | _           | _                                            | IN                        |
| Target torque                                  | IN        | _                        | OUT         | _                                           | _                            |             |                                              |                           |
| Torque upper limit                             | IN        | _                        | OUT         | _                                           | _                            |             | _                                            | _                         |
| Turbine shaft speed                            | IN        | _                        | OUT         | _                                           | _                            |             |                                              |                           |
| AT warning light on request                    |           | —                        | OUT         | —                                           | —                            |             |                                              | IN                        |

09-40

|                                                                        | Multiplex module |                          |             |                                                                  |                              |      |                                              |                           |  |
|------------------------------------------------------------------------|------------------|--------------------------|-------------|------------------------------------------------------------------|------------------------------|------|----------------------------------------------|---------------------------|--|
| Signal                                                                 | РСМ              | EPS<br>control<br>module | TCM<br>(AT) | ABS HU/<br>CM<br>(with<br>ABS)<br>DSC HU/<br>CM<br>(with<br>DSC) | Keyless<br>control<br>module | TPMS | Steering<br>angle<br>sensor<br>(with<br>DSC) | Instrum<br>ent<br>cluster |  |
| Target gear position/selector lever position                           | IN               | _                        | OUT         | IN                                                               | _                            | _    | _                                            | IN                        |  |
| position                                                               | _                | _                        | OUT         | _                                                                | _                            |      | _                                            | IN                        |  |
| Brake system status                                                    | IN               | _                        | _           | OUT<br>OUT                                                       | _                            | _    | _                                            | _                         |  |
| Diake System status                                                    | _                | _                        | _           | OUT                                                              | _                            | _    | _                                            | IN                        |  |
| Brake light switch status                                              | IN               | _                        | IN          | OUT                                                              | _                            |      | _                                            | _                         |  |
| Torque down request                                                    | IN               | _                        | OUT         | OUT                                                              | _                            | _    | _                                            | _                         |  |
| Wheel speed (LF, RF, LR, RR)                                           | IN               | _                        | IN          | OUT                                                              | _                            | _    | _                                            | _                         |  |
| Wheel speed sensor status (LF, RF, LR, RR)                             | IN               | _                        |             | OUT                                                              | _                            |      | _                                            | _                         |  |
| Steering angle reference point request                                 |                  | _                        |             | OUT                                                              | _                            |      | IN                                           | _                         |  |
| Tire pressure warning light on request                                 | _                | _                        | _           | _                                                                | _                            | OUT  | _                                            | IN                        |  |
| Tire pressure warning buzzer on request                                | _                | _                        | _           | _                                                                | _                            | OUT  | _                                            | IN                        |  |
| Steering angle                                                         | _                | _                        | _           | IN                                                               | _                            | _    | OUT                                          | _                         |  |
| Steering angle sensor status (sensor malfunction, circuit malfunction) | _                | _                        | _           | —<br>IN                                                          | _                            | _    | OUT                                          | _                         |  |
| Fuel tank level                                                        | IN               | _                        | _           | _                                                                | _                            | _    |                                              | OUT                       |  |
| Parking brake position                                                 | _                | _                        | _           | IN                                                               | _                            | _    | _                                            | OUT                       |  |


OUT: Output (sends signal)
IN: Input (receives signal)

|                                       | Multiplex module       |                                                                                                 |                                                                                 |                                                         |                         |  |  |  |
|---------------------------------------|------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------|--|--|--|
| Signal                                | Information<br>display | Audio unit (Without car- navigation system), Car- navigation unit (with car- navigation system) | SIRIUS<br>satellite radio<br>unit (with<br>SIRIUS<br>satellite radio<br>system) | Hands-free<br>telephone unit<br>(with HF/TEL<br>system) | Climate<br>control unit |  |  |  |
| Information switch status             | OUT                    | _                                                                                               | _                                                                               | _                                                       | IN                      |  |  |  |
| Dimmer cancel                         | OUT                    | _                                                                                               | _                                                                               | _                                                       | IN                      |  |  |  |
| Audio status display request          | IN                     | OUT                                                                                             | _                                                                               |                                                         |                         |  |  |  |
| Buttons status                        | _                      | OUT                                                                                             | _                                                                               | _                                                       | IN                      |  |  |  |
| Dutions status                        | IN                     | OUT                                                                                             | _                                                                               | _                                                       |                         |  |  |  |
| SIRIUS satellite radio system related | _                      | OUT                                                                                             | IN                                                                              | _                                                       | _                       |  |  |  |
| information                           | _                      | IN                                                                                              | OUT                                                                             | _                                                       | _                       |  |  |  |
| SIRIUS satellite radio status         | _                      | IN                                                                                              | OUT                                                                             | _                                                       | _                       |  |  |  |
| Hands-free telephone system related   | _                      | IN                                                                                              | _                                                                               | OUT                                                     | _                       |  |  |  |
| information                           | _                      | OUT                                                                                             | _                                                                               | IN                                                      | _                       |  |  |  |
| Hands-free telephone status           | _                      | IN                                                                                              | _                                                                               | OUT                                                     | _                       |  |  |  |
| A/C operation status display request  | IN                     | _                                                                                               | _                                                                               | _                                                       | OUT                     |  |  |  |
| A/C operation request                 | IN                     | _                                                                                               | _                                                                               | _                                                       | OUT                     |  |  |  |
| Blower speed                          | IN                     | _                                                                                               | _                                                                               | _                                                       | OUT                     |  |  |  |
| Beep sound request                    | _                      | IN                                                                                              | _                                                                               | _                                                       | OUT                     |  |  |  |
| Deep soulid request                   | OUT                    | IN                                                                                              | _                                                                               | _                                                       |                         |  |  |  |

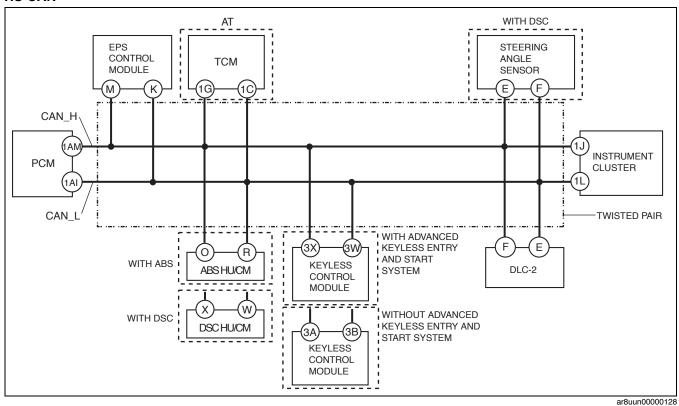
09-40

### TWISTED PAIR CONSTRUCTION

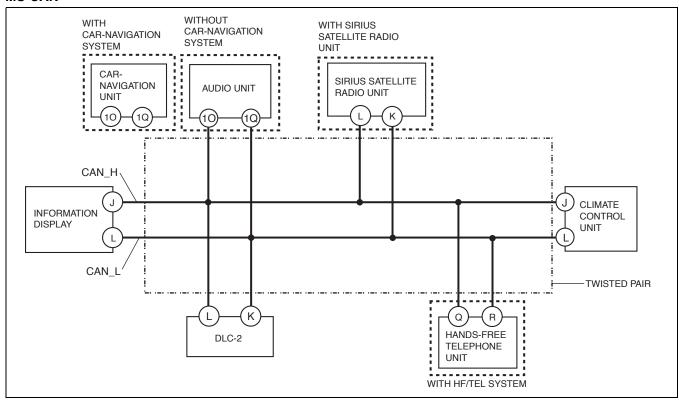
- The multichannel use two spirally twisted wires called a twisted pair, and each wire, CAN\_L and CAN H, has its own special function.
- The two bus lines have opposite voltage characteristics, with almost no outward noise effect, and no effect from outside noise.



### ON-BOARD DIAGNOSTIC OUTLINE [CAN (CONTROLLER AREA NETWORK)]


id094000104000

- The CAN system related module has an on-board diagnostic function.
- The on-board diagnostic function consists of the following functions: a malfunction detection function, which
  detects overall malfunctions in the CAN-related parts; a memory function, which stores detected DTCs; a
  display function, which indicates malfunction locations and status via DTC output; and a PID/data monitoring
  function, which reads out specific input/output signals and verifies the input/output condition. Also, the
  malfunctioning part can be determined by the combination of output DTCs.
- Using the Mazda Modular Diagnostic System (M-MDS), DTCs can be read out and deleted, and the PID/data monitoring function can be activated.
- A fail-safe function is equipped in case a malfunction occurs in the CAN system. The sending module sends an error signal and the receiving module illuminates a warning light to ensure safety.


### ON-BOARD DIAGNOSTIC FUNCTION [CAN (CONTROLLER AREA NETWORK)]

id094000104100

## Block Diagram HS-CAN



### **MS-CAN**



### 09-40

### 2009 Mazda RX-8 Service Highlights (3452-1U-08C) CONTROL SYSTEM

### **On-Board Diagnostic Function Malfunction detection function**

- The failure detection function in each CAN system-related module detects malfunctions in input/output signals.
- This function outputs the DTC for the detected malfunction to the DLC-2, and also sends the detected result to the memory function and fail-safe function.

#### Fail-safe function

 When the failure detection function determines that there is a malfunction, the fail-safe function illuminates a warning light to inform the driver of the malfunction.

#### **Memory function**

 The memory function stores the DTC for the malfunction of input/output signals for related parts, as determined by the failure detection function.

Self-malfunction diagnostic function

• The self-malfunction diagnostic function determines that there is a malfunction, and outputs a signal, as a DTC, to the DLC-2. The DTC can be read out using the Mazda Modular Diagnostic System (M-MDS). HS-CAN

| DTC Output Unit         | DTC                 | Malfunction location                                             |
|-------------------------|---------------------|------------------------------------------------------------------|
|                         | U1900               | CAN system communication error                                   |
|                         | U2023               | Abnormal message from other module                               |
| Instrument cluster      | U2064               | Warning light illumination request signal from other modules     |
|                         | U2516               | CAN system communication error (HS-CAN)                          |
|                         | U0073               | Module communication error (CAN bus)                             |
|                         | U0101               | Communication error to TCM                                       |
| PCM                     | U0121               | ABS HU/CM (with ABS) or DSC HU/CM (with DSC) communication error |
|                         | U0155               | Communication error to instrument cluster                        |
|                         | U0167               | Communication error to keyless control module                    |
| ABS HU/CM (with ABS)    | U1900               | CAN system communication error                                   |
| ABS HU/CIVI (WILIT ABS) | U2516               | CAN system wiring harness open or short circuit                  |
|                         | U0073               | Module communication error (CAN bus)                             |
|                         | U0100               | PCM communication error                                          |
| DSC HU/CM (with DSC)    | U0101               | Communication error to TCM                                       |
| DSC 110/CW (WILL DSC)   | U0155               | Communication error to instrument cluster                        |
|                         | U1900               | CAN system communication error                                   |
|                         | U2023               | Abnormal message from PCM                                        |
|                         | U0073               | Module communication error (CAN bus)                             |
| EPS control module      | U1900               | CAN system communication error                                   |
|                         | U2023               | Abnormal message from PCM                                        |
|                         | U0073               | CAN system communication error                                   |
| тсм                     | U0100               | PCM communication error                                          |
|                         | U0121               | ABS HU/CM (with ABS) or DSC HU/CM (with DSC) communication error |
|                         | U0073               | Module communication error (CAN bus)                             |
|                         | U0100               | PCM communication error                                          |
|                         | U0323               | Communication error to instrument cluster                        |
| Keyless control module  | U1147 <sup>*1</sup> | Communication error to PCM                                       |
|                         | U2023               | Abnormal message from PCM                                        |
|                         | U2510 <sup>*1</sup> | Communication error to PCM                                       |

<sup>\*1 :</sup> with keyless entry system only

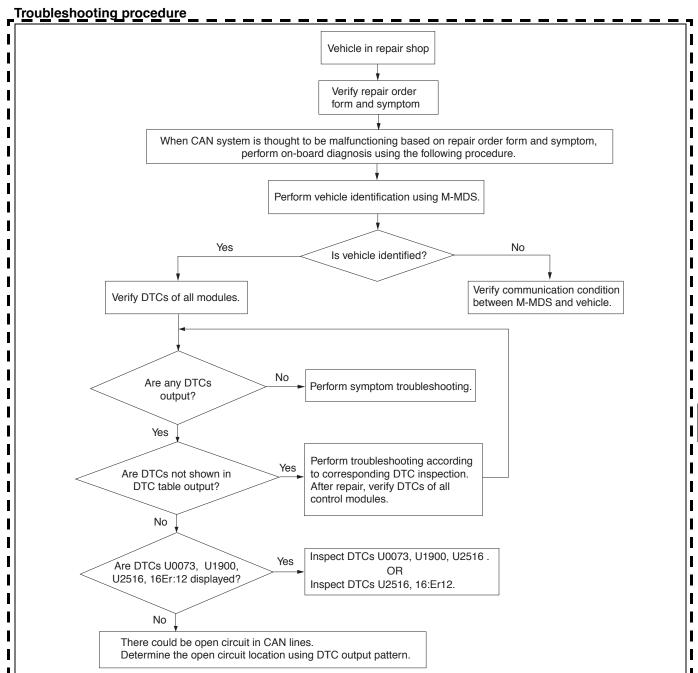
## 2009 Mazda RX-8 Service Highlights (3452–1U–08C) CONTROL SYSTEM

### **MS-CAN**

| DTC Output Unit                                     | DTC                          | Malfunction location                        |  |
|-----------------------------------------------------|------------------------------|---------------------------------------------|--|
| Information display                                 | U0164                        | Communication error to climate control unit |  |
|                                                     | U0184                        | Communication error to audio unit           |  |
|                                                     | U2516                        | CAN system communication error              |  |
| Audio unit                                          | 16:Er12                      | CAN system communication error              |  |
| Car-navigation unit                                 | Device code 16/error code 12 | CAN system communication error              |  |
|                                                     | Device code 17/error code 11 | Communication error to instrument cluster   |  |
| Hands-free telephone unit (with audio unit)         | 26:Er81                      | CAN system communication error              |  |
| Hands-free telephone unit (with carnavigation unit) | Device code 26/error code 81 | CAN system communication error              |  |

### PID/data monitoring function

- The PID/data monitoring function is used to freely select and read out, in real time, the monitored items for the input/output signals of the instrument cluster.
- An SST (M-MDS or equivalent) is used to read out the PID/data monitor information.


#### PID/data monitor table

| PID name (definition)                                         | Condition   | Specification                                           | PID monitor module | Terminal                                                                        |
|---------------------------------------------------------------|-------------|---------------------------------------------------------|--------------------|---------------------------------------------------------------------------------|
| ABS_MSG<br>(Missing message from the<br>ABS (DSC) HU/CM)      | Present     | Circuit in the ABS (DSC) HU/CM is normal.               |                    | ABS HU/CM: O, R                                                                 |
|                                                               | Not Present | Not Present Circuit in the ABS (DSC) HU/CM is disable.  |                    | <ul> <li>DSC HU/CM: X,<br/>W</li> <li>Instrument<br/>cluster: 1J, 1L</li> </ul> |
| EPS_MSG<br>(Missing message from the<br>EPS control module)   | Present     | Circuit in the EPS control module is normal             |                    | EPS control<br>module: M, K                                                     |
|                                                               | Not Present | Circuit in the EPS control module is disable            |                    | Instrument cluster: 1J, 1L                                                      |
| PCM_MSG<br>(Missing message from the<br>PCM)                  | Present     | Circuit in the PCM is normal.                           |                    | • PCM: 1AM, 1AI                                                                 |
|                                                               | Not Present | esent Circuit in the PCM is disable. Instrument cluster |                    | Instrument cluster: 1J, 1L                                                      |
| RKE_MS(£*1] (Missing message from the keyless control module) | Present     | Circuit in the keyless control module is normal.        |                    | Keyless control<br>module: 3X, 3W                                               |
|                                                               | Not Present | Circuit in the keyless control module is disable.       |                    | <ul> <li>Instrument cluster: 1J, 1L</li> </ul>                                  |
| TCM_MSG 2 (Missing message from the TCM)                      | Present     | Circuit in the TCM is normal.                           |                    | • TCM: 1G, 1C                                                                   |
|                                                               | Not Present | Circuit in the TCM is disable.                          |                    | <ul> <li>Instrument cluster: 1J, 1L</li> </ul>                                  |
| TPM_MSG<br>(Missing message from the instrument cluster)      | Present     | Circuit in the instrument cluster is normal             |                    | Instrument                                                                      |
|                                                               | Not Present | Circuit in the instrument cluster is disable            |                    | cluster: 1J, 1L                                                                 |

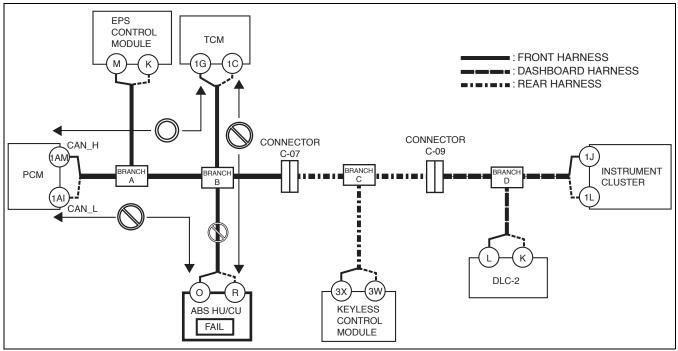
### \*1 : With advanced keyless system \*2 : AT

### Narrowing down malfunction locations

- When the CAN system is thought to be malfunctioning based on the repair order form and the malfunctioning symptom, perform the CAN system on-board diagnosis.
- DTCs are output due to a control module or sensor malfunction, or incorrect power supply. Verify the output DTCs and first inspect the DTCs not shown in the DTC table.
- The open circuit location in the CAN system can be determined by verifying the DTCs detected in each module and by the module which has failed.
- It is possible for signal error DTCs to be output in addition to communication error DTCs if there is an open circuit. Determine the open circuit location if the communication error and signal error DTCs are output simultaneously.
- For DTC details, refer to the "Self-malfunction diagnostic function". (See 09-40-11 Self-malfunction diagnostic function.)



09-40


## 2009 Mazda RX-8 Service Highlights (3452–1U–08C) CONTROL SYSTEM

### Example: ABS HU/CM-related wiring harness open circuit (if DTC is output)

1. Verify the CAN system-related module DTCs and the failed module using the Mazda Modular Diagnostic System (M-MDS).

| Module             | Displayed DTC | Probable malfunction location  |
|--------------------|---------------|--------------------------------|
| PCM                | U0121         | ABS HU/CM communication error  |
| TCM                | U0121         | ABS HU/CM communication error  |
| Instrument cluster | U1900         | CAN system communication error |

| Module    | Fail |
|-----------|------|
| ABS HU/CM | ×    |



ar8uun00000130

2. The wiring harness between the ABS HU/CM and branch B, or the ABS HU/CM itself could have a malfunction because the DTCs indicating a communication error between the ABS HU/CM and PCM/TCM, in addition to "Fail" on the ABS HU/CM, are displayed even though communication between the PCM and TCM is normal.